9 research outputs found

    A New Role for TIMP-1 in Modulating Neurite Outgrowth and Morphology of Cortical Neurons

    Get PDF
    BACKGROUND:Tissue inhibitor of metalloproteinases-1 (TIMP-1) displays pleiotropic activities, both dependent and independent of its inhibitory activity on matrix metalloproteinases (MMPs). In the central nervous system (CNS), TIMP-1 is strongly upregulated in reactive astrocytes and cortical neurons following excitotoxic/inflammatory stimuli, but no information exists on its effects on growth and morphology of cortical neurons. PRINCIPAL FINDINGS:We found that 24 h incubation with recombinant TIMP-1 induced a 35% reduction in neurite length and significantly increased growth cones size and the number of F-actin rich microprocesses. TIMP-1 mediated reduction in neurite length affected both dendrites and axons after 48 h treatment. The effects on neurite length and morphology were not elicited by a mutated form of TIMP-1 inactive against MMP-1, -2 and -3, and still inhibitory for MMP-9, but were mimicked by a broad spectrum MMP inhibitor. MMP-9 was poorly expressed in developing cortical neurons, unlike MMP-2 which was present in growth cones and whose selective inhibition caused neurite length reductions similar to those induced by TIMP-1. Moreover, TIMP-1 mediated changes in cytoskeleton reorganisation were not accompanied by modifications in the expression levels of actin, betaIII-tubulin, or microtubule assembly regulatory protein MAP2c. Transfection-mediated overexpression of TIMP-1 dramatically reduced neuritic arbour extension in the absence of detectable levels of released extracellular TIMP-1. CONCLUSIONS:Altogether, TIMP-1 emerges as a modulator of neuronal outgrowth and morphology in a paracrine and autrocrine manner through the inhibition, at least in part, of MMP-2 and not MMP-9. These findings may help us understand the role of the MMP/TIMP system in post-lesion pre-scarring conditions

    Implication de MMP-2 dans les propriétés des cellules engainantes de la muqueuse olfactive et dans la réparation des lésions de la moelle épinière : études in vitro et in vivo

    No full text
    Lorsque le système nerveux central des mammifères est lĂ©sĂ©, un ensemble de rĂ©actions secondaires impliquant l’inflammation et une gliose rĂ©active conduit Ă  la formation d’une cicatrice gliale qui inhibe la rĂ©gĂ©nĂ©ration axonale. Dans le cas d’une lĂ©sion de la moelle Ă©pinière l’absence de rĂ©paration efficace des rĂ©seaux axonaux lĂ©sĂ©s peut conduire Ă  la paraplĂ©gie ou Ă  la tĂ©traplĂ©gie. Aujourd’hui on estime Ă  plus de 2,5 millions le nombre d’individus dans le monde souffrant de ces handicaps et il n’existe Ă  ce jour aucun traitement validĂ© pour amĂ©liorer la situation des patients. Cependant, certaines approches de thĂ©rapie molĂ©culaire, cellulaire, et de rĂ©adaptation semblent toutefois prometteuses sur modèle animal. La dĂ©gradation des chondroitines sulfates protĂ©oglycanes (CSPGs), principales protĂ©ines inhibitrices de la cicatrice gliale, par clivage des coeurs protĂ©iques et ou des chaĂ®nes latĂ©rales glycosaminoglycanes favorise la rĂ©gĂ©nĂ©ration axonale et entraĂ®ne une rĂ©cupĂ©ration fonctionnelle. Des Ă©tudes ont montrĂ© que la mĂ©talloprotĂ©ase matricielle MMP‐2 est capable de dĂ©grader le coeur protĂ©ique de ces CSPGs. Par ailleurs, les cellules engainantes de la muqueuse olfactive (CEOs) occupent une place privilĂ©giĂ©e parmi les types cellulaires proposĂ©s dans la thĂ©rapie cellulaire en favorisant la croissance axonale et la rĂ©cupĂ©rationfonctionnelle après lĂ©sion de la moelle Ă©pinière. Cependant, les mĂ©canismes qui sous‐tendent les propriĂ©tĂ©s rĂ©gĂ©nĂ©ratrices des CEOs restent essentiellement inconnus. Dans notre Thèse, nous prĂ©sentons nos travaux en trois parties. Dans la première, nous montrons in vitro que : i) les CEOs en culture primaire secrètent des taux Ă©levĂ©s de MMP‐2, au moins en partie active ; ii) les gĂ©latinases MMP‐2 et MMP‐9 prĂ©sentent une sĂ©crĂ©tion vĂ©siculaire golgi‐dĂ©pendante; iii) la distribution des vĂ©sicules contenant les MMPs est liĂ©e Ă  celle du cytosquelette et des moteurs molĂ©culaires qui participent probablement Ă  une sĂ©crĂ©tion focalisĂ©e de ces molĂ©cules en fonction d’interactions entre le milieu extracellulaire et le cytosquelette ; iv) les MMPs peuvent avoir une distribution nuclĂ©aire dans les CEOs ; v) MMP‐2 jouerait un rĂ´le dans la migration des CEOs, un processus important dans leurs capacitĂ©s Ă  rĂ©parer le tissu nerveux. Dans la seconde partie de notre thèse, nous avons dĂ©veloppĂ© un modèle de cicatrice gliale in vitro et nous montrons que : i) la migration des cellules astrocytaires de la cicatrice gliale in vitro est sensible aux effets des inhibiteurs des MMPs, contrairement aux cellules microgliales ; ii) les CEOs lèvent l’inhibition de croissance axonale due aux cellules astro‐microgiales ; iii) le potentiel des CEOs Ă  crĂ©er un environnement permissif Ă  la croissance axonale serait liĂ© aux gĂ©latinases sĂ©crĂ©tĂ©es par ces cellules, en particulier MMP‐2. Dans la troisième partie de notre Thèse, nous avons Ă©valuĂ© in vivo si MMP‐2 contribuait aux effets bĂ©nĂ©fiques des CEOs. Nous montrons pour la première fois, dans un model animal d’hĂ©misection de la moelle Ă©pinière, et en utilisant des approches anatomiques, Ă©lectrophysiologiques et d’analyse de la locomotion, qu’une administration chronique de MMP‐2 recombinante : i) augmente le nombre et le diamètre des axones du cotĂ© distal du site de lĂ©sion ; ii) restaure la rĂ©ponse Ă©voquĂ©e du reflexe‐H distal au site de lĂ©sion ; iii) amĂ©liore la rĂ©ponse respiratoire Ă  la fatigue musculaire induite Ă©lectriquement et, iv) le plus important, amĂ©liore la rĂ©cupĂ©ration de la locomotion. L’ensemble de notre travail suggère que MMP‐2 sĂ©crĂ©tĂ©e par les CEOs jouerait un rĂ´le important des les propriĂ©tĂ©s bĂ©nĂ©fiques de ces cellules lorsqu’elles sont transplantĂ©es dans des sites de lĂ©sions de la ME, et que cette MMP prĂ©sente un rĂ©el potentiel thĂ©rapeutique qui reste Ă  explorer.When the mammalian central nervous system is injured, a set of secondary reactions involving inflammation and reactive gliosis leads to the formation of a glial scar that inhibits axonal regeneration. In the case of a spinal cord lesion, the lack of effective repair of injured axonal networks can lead to paraplegia or quadriplegia. Today it is estimated that more than 2.5 million people are suffering from these handicaps worldwide, and there is as yet no validated treatment to improve the situation of patients. However, based on animal models, some molecular, cellular, and rehabilitation therapy approaches seem promising. Degradation of chondroitin sulfate proteoglycan (CSPG), the main inhibitory protein of the glial scar, by cleavage of either the protein core or side chains glycosaminoglycans, promotes axonal regeneration and leads to functional recovery. Studies have shown that the matrix metalloproteinase MMP-2 is capable of degrading the core protein of the CSPG. In addition, olfactory mucosa ensheathing cells (OECs) represent the most promising cell type for promoting axonal growth and functional recovery after spinal cord injury. However, the mechanisms underlying the regenerative properties of OECs remain essentially unknown. Here, we present our work in 2 parts. First, we show in vitro that: i) OECs in primary culture secrete high levels of active MMP-2; ii) both gelatinases, MMP-2 and MMP-9, have a vesicular Golgi-dependent secretion; iii) the distribution of vesicles containing the MMPs is linked to cytoskeleton and molecular motors distribution, which are probably involved in focused secretion of these molecules; iv) MMPs may have a nuclear distribution in OECs; v) MMP-2 plays a role in the migration of EOCs, an important process in their ability to repair nerve tissue. In the second part of my work, we evaluated whether the MMP-2 contributed to the beneficial effects of EOCs. We used an in vivo approach and we show for the first time, in an animal model of hemisection of the spinal cord, and using anatomical, electrophysiological analysis of locomotion approaches, that a chronic administration of recombinant MMP-2: i) increases the number and diameter of axons in the distal side of the site of injury; ii) restores the response-evoked H-reflex distal to the lesion site, iii) enhances the respiratory response to electrically-induced muscle fatigue, and iv) most importantly, improves the recovery of locomotion. All our work suggests that MMP-2, secreted by the EOCs, plays an important role in the recovery properties of these cells, when transplanted into spinal cord lesions, and that this MMP has a real therapeutic potential that remains to be explored

    Implication de MMP-2 dans les propriétés des cellules engainantes de la muqueuse olfactive et dans la réparation des lésions de la moelle épinière (études in vitro et in vivo)

    No full text
    Lorsque le système nerveux central des mammifères est lĂ©sĂ©, un ensemble de rĂ©actions secondaires impliquant l inflammation et une gliose rĂ©active conduit Ă  la formation d une cicatrice gliale qui inhibe la rĂ©gĂ©nĂ©ration axonale. Dans le cas d une lĂ©sion de la moelle Ă©pinière l absence de rĂ©paration efficace des rĂ©seaux axonaux lĂ©sĂ©s peut conduire Ă  la paraplĂ©gie ou Ă  la tĂ©traplĂ©gie. Aujourd hui on estime Ă  plus de 2,5 millions le nombre d individus dans le monde souffrant de ces handicaps et il n existe Ă  ce jour aucun traitement validĂ© pour amĂ©liorer la situation des patients. Cependant, certaines approches de thĂ©rapie molĂ©culaire, cellulaire, et de rĂ©adaptation semblent toutefois prometteuses sur modèle animal. La dĂ©gradation des chondroitines sulfates protĂ©oglycanes (CSPGs), principales protĂ©ines inhibitrices de la cicatrice gliale, par clivage des coeurs protĂ©iques et ou des chaĂ®nes latĂ©rales glycosaminoglycanes favorise la rĂ©gĂ©nĂ©ration axonale et entraĂ®ne une rĂ©cupĂ©ration fonctionnelle. Des Ă©tudes ont montrĂ© que la mĂ©talloprotĂ©ase matricielle MMP‐2 est capable de dĂ©grader le coeur protĂ©ique de ces CSPGs. Par ailleurs, les cellules engainantes de la muqueuse olfactive (CEOs) occupent une place privilĂ©giĂ©e parmi les types cellulaires proposĂ©s dans la thĂ©rapie cellulaire en favorisant la croissance axonale et la rĂ©cupĂ©rationfonctionnelle après lĂ©sion de la moelle Ă©pinière. Cependant, les mĂ©canismes qui sous‐tendent les propriĂ©tĂ©s rĂ©gĂ©nĂ©ratrices des CEOs restent essentiellement inconnus. Dans notre Thèse, nous prĂ©sentons nos travaux en trois parties. Dans la première, nous montrons in vitro que : i) les CEOs en culture primaire secrètent des taux Ă©levĂ©s de MMP‐2, au moins en partie active ; ii) les gĂ©latinases MMP‐2 et MMP‐9 prĂ©sentent une sĂ©crĂ©tion vĂ©siculaire golgi‐dĂ©pendante; iii) la distribution des vĂ©sicules contenant les MMPs est liĂ©e Ă  celle du cytosquelette et des moteurs molĂ©culaires qui participent probablement Ă  une sĂ©crĂ©tion focalisĂ©e de ces molĂ©cules en fonction d interactions entre le milieu extracellulaire et le cytosquelette ; iv) les MMPs peuvent avoir une distribution nuclĂ©aire dans les CEOs ; v) MMP‐2 jouerait un rĂ´le dans la migration des CEOs, un processus important dans leurs capacitĂ©s Ă  rĂ©parer le tissu nerveux. Dans la seconde partie de notre thèse, nous avons dĂ©veloppĂ© un modèle de cicatrice gliale in vitro et nous montrons que : i) la migration des cellules astrocytaires de la cicatrice gliale in vitro est sensible aux effets des inhibiteurs des MMPs, contrairement aux cellules microgliales ; ii) les CEOs lèvent l inhibition de croissance axonale due aux cellules astro‐microgiales ; iii) le potentiel des CEOs Ă  crĂ©er un environnement permissif Ă  la croissance axonale serait liĂ© aux gĂ©latinases sĂ©crĂ©tĂ©es par ces cellules, en particulier MMP‐2. Dans la troisième partie de notre Thèse, nous avons Ă©valuĂ© in vivo si MMP‐2 contribuait aux effets bĂ©nĂ©fiques des CEOs. Nous montrons pour la première fois, dans un model animal d hĂ©misection de la moelle Ă©pinière, et en utilisant des approches anatomiques, Ă©lectrophysiologiques et d analyse de la locomotion, qu une administration chronique de MMP‐2 recombinante : i) augmente le nombre et le diamètre des axones du cotĂ© distal du site de lĂ©sion ; ii) restaure la rĂ©ponse Ă©voquĂ©e du reflexe‐H distal au site de lĂ©sion ; iii) amĂ©liore la rĂ©ponse respiratoire Ă  la fatigue musculaire induite Ă©lectriquement et, iv) le plus important, amĂ©liore la rĂ©cupĂ©ration de la locomotion. L ensemble de notre travail suggère que MMP‐2 sĂ©crĂ©tĂ©e par les CEOs jouerait un rĂ´le important des les propriĂ©tĂ©s bĂ©nĂ©fiques de ces cellules lorsqu elles sont transplantĂ©es dans des sites de lĂ©sions de la ME, et que cette MMP prĂ©sente un rĂ©el potentiel thĂ©rapeutique qui reste Ă  explorer.When the mammalian central nervous system is injured, a set of secondary reactions involving inflammation and reactive gliosis leads to the formation of a glial scar that inhibits axonal regeneration. In the case of a spinal cord lesion, the lack of effective repair of injured axonal networks can lead to paraplegia or quadriplegia. Today it is estimated that more than 2.5 million people are suffering from these handicaps worldwide, and there is as yet no validated treatment to improve the situation of patients. However, based on animal models, some molecular, cellular, and rehabilitation therapy approaches seem promising. Degradation of chondroitin sulfate proteoglycan (CSPG), the main inhibitory protein of the glial scar, by cleavage of either the protein core or side chains glycosaminoglycans, promotes axonal regeneration and leads to functional recovery. Studies have shown that the matrix metalloproteinase MMP-2 is capable of degrading the core protein of the CSPG. In addition, olfactory mucosa ensheathing cells (OECs) represent the most promising cell type for promoting axonal growth and functional recovery after spinal cord injury. However, the mechanisms underlying the regenerative properties of OECs remain essentially unknown. Here, we present our work in 2 parts. First, we show in vitro that: i) OECs in primary culture secrete high levels of active MMP-2; ii) both gelatinases, MMP-2 and MMP-9, have a vesicular Golgi-dependent secretion; iii) the distribution of vesicles containing the MMPs is linked to cytoskeleton and molecular motors distribution, which are probably involved in focused secretion of these molecules; iv) MMPs may have a nuclear distribution in OECs; v) MMP-2 plays a role in the migration of EOCs, an important process in their ability to repair nerve tissue. In the second part of my work, we evaluated whether the MMP-2 contributed to the beneficial effects of EOCs. We used an in vivo approach and we show for the first time, in an animal model of hemisection of the spinal cord, and using anatomical, electrophysiological analysis of locomotion approaches, that a chronic administration of recombinant MMP-2: i) increases the number and diameter of axons in the distal side of the site of injury; ii) restores the response-evoked H-reflex distal to the lesion site, iii) enhances the respiratory response to electrically-induced muscle fatigue, and iv) most importantly, improves the recovery of locomotion. All our work suggests that MMP-2, secreted by the EOCs, plays an important role in the recovery properties of these cells, when transplanted into spinal cord lesions, and that this MMP has a real therapeutic potential that remains to be explored.AIX-MARSEILLE2-Bib.electronique (130559901) / SudocSudocFranceF

    La vitamine D au secours du traumatisme médullaire : un espoir à confirmer

    No full text
    En 2014, sera lancé le premier essai clinique randomisé, contrôlé, en double aveugle, de phase II, destineéà´valuer l’efficacité thérapeutique du cholécalciférol (vitamine D3) chez des personnes tétraplégiques. Cette intervention clinique fait suite à plusieurs études montrant qu’une supplémentation en vitamine D améliore la récupération fonctionnelle chez des rats ayant subi un traumatisme nerveux. Dans un premier temps, nous avons utilisé un modèle de lésion du système nerveux périphérique pour apporter la « preuve de principe » de l’efficacité de la vitamine D. Nous avons d’abord montré, chez le rat, que l’ergocalciférol (vitamine D2) augmente le nombre et le diamètre d’axones néo-formés et améliore la réponse des fibres afférentes métabosensibles issues du muscle tibial, dans un modèle de transsection avec suture inversée du nerf péronier. Ensuite, nous avons comparé vitamine D2 et vitamine D3 et démontré que cette dernière est plus efficace. À la dose de 500 UI/kg/jour, la vitamine D3 induit une récupération fonctionnelle remarquable, une augmentation du nombre d’axones préservés et un accroissement de la myélinisation. Dans un deuxième temps, nous nous sommes intéressés aux traumatismes de la moelle épinière. Nous avons démontré que, trois mois après une compression de la moelle épinière au niveau thoracique T10, la vitamine D3, délivrée à la dose de 200 UI/kg/jour, améliore la fréquence ventilatoire et la spasticité. Ensuite, lors d’une seconde étude avec hémisection au niveau cervical C2, nous avons observé, trois mois après le traumatisme, que la vitamine D3, administrée à la dose de 500 UI/kg/jour, accroît le nombre de fibres traversant le site de lésion et induit une amélioration de la locomotion et de la spasticité. Toutefois, ces résultats bénéfiques sont moindres si la vitamine D est fournie une semaine après le traumatisme au lieu du lendemain

    Cholecalciferol (vitamin D-3) improves functional recovery when delivered during the acute phase after a spinal cord trauma

    No full text
    International audienceIn a previous study, based on a rat model of thoracic spinal cord compression, we demonstrated that cholecalciferol (Vitamin D-3), delivered at the dose of 200 IU/kg/day, significantly improved ventilatory frequency and spasticity. In order to confirm the restorative potential of vitamin D, we performed a new study, using a rat model of left cervical hemisection (C-2). From Day 1 or Day 7, animals received, during three months, a weekly oral bolus of either cholecalciferol, at the dose of 500 IU/kg/day, or vehicle, namely triglycerides. Rats were assessed every month, using a ladder test for sensori-locomotor ability and neuromuscular capacity. Three months after injury, H-reflex was recorded from left extensor digitorum muscle in order to measure the reflexivity of the sub-lesional region. Ventilatory frequency was also monitored during an electrically induced muscle fatigue of the hindlimb known to enhance muscle metaboreflex and increase respiratory rate. After recording the phrenic nerve activity, ipsilateral to the lesion, during spontaneous breathing, animals were artificially ventilated while paralyzed with a neuromuscular blocking agent and then the brainstem respiratory centres were provoked to maximal output by temporarily stopping the ventilator. Spinal cords were immunostained with an anti-neurofilament antibody to evaluate axon numbers. We show here that vitamin D-treated animals display i) an enhanced locomotor activity, ii) an improved breathing when hindlimb muscle was electrically stimulated to induce fatigue, iii) an H-reflex depression similar to control animals, iv) a phrenic nerve activity response to a temporary asphyxial stress and v) a non significant decreased number of axons in the proximal stump when compared with the Sham group. This new set of data confirms that vitamin D is a potent molecule that could be tested in clinical trials assessing functional recovery in para-/tetra-plegic patients, shortly after a trauma. (C) 2015 Elsevier Ltd. All rights reserved

    Role of Matrix Metalloproteinases in Migration and Neurotrophic Properties of Nasal Olfactory Stem and Ensheathing Cells

    No full text
    International audienceAdult olfactory ectomesenchymal stem cells (OE-MSCs) and olfactory ensheathing cells (OECs), both from the nasal olfactory lamina propria, display robust regenerative properties when transplanted into the nervous system, but the mechanisms supporting such therapeutic effects remain unknown. Matrix metalloproteinases (MMPs) are an important family of proteinases contributing to cell motility and axonal outgrowth across the extracellular matrix (ECM) in physiological and pathological conditions. In this study, we have characterized for the first time in nasal human OE-MSCs the expression profile of some MMPs currently associated with cell migration and invasiveness. We demonstrate different patterns of expression for MMP-1, MMP-2, MMP-9, and MT1-MMP upon cell migration when compared with nonmigrating cells. Our results establish a correspondence between the localization of these proteinases in the migration front with the ability of cells to migrate. Using various modulators of MMP activity, we also show that at least MMP-2, MMP-9, and MT1-MMP contribute to OE-MSC migration in an in vitro 3D test. Furthermore, we demonstrate under the same conditions of culture used for in vivo transplantation that OE-MSCs and OECs secrete neurotrophic factors that promote neurite outgrowth of cortical and dorsal root ganglia (DRG) neurons, as well as axo-dendritic differentiation of cortical neurons. These effects were abolished by the depletion of MMP-2 and MMP-9 from the culture conditioned media. Altogether, our results provide the first evidence that MMPs may contribute to the therapeutic features of OE-MSCs and OECs through the control of their motility and/or their neurotrophic properties. Our data provide new insight into the mechanisms of neuroregeneration and will contribute to optimization of cell therapy strategies

    Vesicular trafficking and secretion of matrix metalloproteinases-2, -9 and tissue inhibitor of metalloproteinases-1 in neuronal cells.

    No full text
    International audienceMatrix metalloproteinases (MMPs) are endopeptidases that cleave matrix, soluble and membrane-bound proteins and are regulated by their endogenous inhibitors the tissue inhibitors of MMPs (TIMPs). Nothing is known about MMP/TIMP trafficking and secretion in neuronal cells. We focussed our attention on the gelatinases MMP-2 and MMP-9, and their inhibitor TIMP-1. MMPs and TIMP-1 fused to GFP were expressed in N2a neuroblastoma and primary neuronal cells to study trafficking and secretion using real time video-microscopy, imaging, electron microscopy and biochemical approaches. We show that MMPs and TIMP-1 are secreted in 160-200 nm vesicles in a Golgi-dependent pathway. These vesicles distribute along microtubules and microfilaments, co-localise differentially with the molecular motors kinesin and myosin Va and undergo both anterograde and retrograde trafficking. MMP-9 retrograde transport involves the dynein/dynactin molecular motor. In hippocampal neurons, MMP-2 and MMP-9 vesicles are preferentially distributed in the somato-dendritic compartment and are found in dendritic spines. Non-transfected hippocampal neurons also demonstrate vesicular secretion of MMP-2 in both its pro- and active forms and gelatinolytic activity localised within dendritic spines. Our results show differential trafficking of MMP and TIMP-1-containing vesicles in neuronal cells and suggest that these vesicles could play a role in neuronal and synaptic plasticity
    corecore