1,031 research outputs found

    Anti-angiogenic SPARC peptides inhibit progression of neuroblastoma tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New, more effective strategies are needed to treat highly aggressive neuroblastoma. Our laboratory has previously shown that full-length Secreted Protein Acidic and Rich in Cysteine (SPARC) and a SPARC peptide corresponding to the follistatin domain of the protein (FS-E) potently block angiogenesis and inhibit the growth of neuroblastoma tumors in preclinical models. Peptide FS-E is structurally complex and difficult to produce, limiting its potential as a therapeutic in the clinic.</p> <p>Results</p> <p>In this study, we synthesized two smaller and structurally more simple SPARC peptides, FSEN and FSEC, that respectively correspond to the N-and C-terminal loops of peptide FS-E. We show that both peptides FSEN and FSEC have anti-angiogenic activity <it>in vitro </it>and <it>in vivo</it>, although FSEC is more potent. Peptide FSEC also significantly inhibited the growth of neuroblastoma xenografts. Histologic examination demonstrated characteristic features of tumor angiogenesis with structurally abnormal, tortuous blood vessels in control neuroblastoma xenografts. In contrast, the blood vessels observed in tumors, treated with SPARC peptides, were thin walled and structurally more normal. Using a novel method to quantitatively assess blood vessel abnormality we demonstrated that both SPARC peptides induced changes in blood vessel architecture that are consistent with blood vessel normalization.</p> <p>Conclusion</p> <p>Our results demonstrate that SPARC peptide FSEC has potent anti-angiogenic and anti-tumorigenic effects in neuroblastoma. Its simple structure and ease of production indicate that it may have clinical utility in the treatment of high-risk neuroblastoma and other types of pediatric and adult cancers, which depend on angiogenesis.</p

    Secreted Protein Acidic and Rich in Cysteine Is a Matrix Scavenger Chaperone

    Get PDF
    Secreted Protein Acidic and Rich in Cysteine (SPARC) is one of the major non-structural proteins of the extracellular matrix (ECM) in remodeling tissues. The functional significance of SPARC is emphasized by its origin in the first multicellular organisms and its high degree of evolutionary conservation. Although SPARC has been shown to act as a critical modulator of ECM remodeling with profound effects on tissue physiology and architecture, no plausible molecular mechanism of its action has been proposed. In the present study, we demonstrate that SPARC mediates the disassembly and degradation of ECM networks by functioning as a matricellular chaperone. While it has low affinity to its targets inside the cells where the Ca2+ concentrations are low, high extracellular concentrations of Ca2+ activate binding to multiple ECM proteins, including collagens. We demonstrated that in vitro, this leads to the inhibition of collagen I fibrillogenesis and disassembly of pre-formed collagen I fibrils by SPARC at high Ca2+ concentrations. In cell culture, exogenous SPARC was internalized by the fibroblast cells in a time- and concentration-dependent manner. Pulse-chase assay further revealed that internalized SPARC is quickly released outside the cell, demonstrating that SPARC shuttles between the cell and ECM. Fluorescently labeled collagen I, fibronectin, vitronectin, and laminin were co-internalized with SPARC by fibroblasts, and semi-quantitative Western blot showed that SPARC mediates internalization of collagen I. Using a novel 3-dimentional model of fluorescent ECM networks pre-deposited by live fibroblasts, we demonstrated that degradation of ECM depends on the chaperone activity of SPARC. These results indicate that SPARC may represent a new class of scavenger chaperones, which mediate ECM degradation, remodeling and repair by disassembling ECM networks and shuttling ECM proteins into the cell. Further understanding of this mechanism may provide insight into the pathogenesis of matrix-associated disorders and lead to the novel treatment strategies

    Effects of blood pressure and tranexamic acid in spontaneous intracerebral haemorrhage: a secondary analysis of a large randomised controlled trial

    Get PDF
    BACKGROUND: Tranexamic acid reduced haematoma expansion and early death, but did not improve functional outcome in the tranexamic acid for hyperacute spontaneous intracerebral haemorrhage-2 (TICH-2) trial. In a predefined subgroup, there was a statistically significant interaction between prerandomisation baseline systolic blood pressure (SBP) and the effect of tranexamic acid on functional outcome (p=0.019). METHODS: TICH-2 was an international prospective double-blind placebo-controlled randomised trial evaluating intravenous tranexamic acid in patients with acute spontaneous intracerebral haemorrhage (ICH). Prerandomisation baseline SBP was split into predefined ≤170 and >170 mm Hg groups. The primary outcome at day 90 was the modified Rankin Scale (mRS), a measure of dependency, analysed using ordinal logistic regression. Haematoma expansion was defined as an increase in haematoma volume of >33% or >6 mL from baseline to 24 hours. Data are OR or common OR (cOR) with 95% CIs, with significance at p170 mm Hg. Tranexamic acid was associated with a favourable shift in mRS at day 90 in those with baseline SBP≤170 mm Hg (cOR 0.73, 95% CI 0.59 to 0.91, p=0.005), but not in those with baseline SBP>170 mm Hg (cOR 1.05, 95% CI 0.85 to 1.30, p=0.63). In those with baseline SBP≤170 mm Hg, tranexamic acid reduced haematoma expansion (OR 0.62, 95% CI 0.47 to 0.82, p=0.001), but not in those with baseline SBP>170 mm Hg (OR 1.02, 95% CI 0.77 to 1.35, p=0.90). CONCLUSIONS: Tranexamic acid was associated with improved clinical and radiological outcomes in ICH patients with baseline SBP≤170 mm Hg. Further research is needed to establish whether certain subgroups may benefit from tranexamic acid in acute ICH. TRIAL REGISTRATION NUMBER: ISRCTN93732214

    Epigenetic alterations differ in phenotypically distinct human neuroblastoma cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic aberrations and a CpG island methylator phenotype have been shown to be associated with poor outcomes in children with neuroblastoma (NB). Seven cancer related genes (<it>THBS-1, CASP8, HIN-1, TIG-1, BLU, SPARC</it>, and <it>HIC-1</it>) that have been shown to have epigenetic changes in adult cancers and play important roles in the regulation of angiogenesis, tumor growth, and apoptosis were analyzed to investigate the role epigenetic alterations play in determining NB phenotype.</p> <p>Methods</p> <p>Two NB cell lines (tumorigenic LA1-55n and non-tumorigenic LA1-5s) that differ in their ability to form colonies in soft agar and tumors in nude mice were used. Quantitative RNA expression analyses were performed on seven genes in LA1-5s, LA1-55n and 5-Aza-dC treated LA1-55n NB cell lines. The methylation status around <it>THBS-1, HIN-1, TIG-1 </it>and <it>CASP8 </it>promoters was examined using methylation specific PCR. Chromatin immunoprecipitation assay was used to examine histone modifications along the <it>THBS-1 </it>promoter. Luciferase assay was used to determine <it>THBS-1 </it>promoter activity. Cell proliferation assay was used to examine the effect of 5-Aza-dC on NB cell growth. The soft agar assay was used to determine the tumorigenicity.</p> <p>Results</p> <p>Promoter methylation values for <it>THBS-1</it>, <it>HIN-1</it>, <it>TIG-1</it>, and <it>CASP8 </it>were higher in LA1-55n cells compared to LA1-5s cells. Consistent with the promoter methylation status, lower levels of gene expression were detected in the LA1-55n cells. Histone marks associated with repressive chromatin states (H3K9Me3, H3K27Me3, and H3K4Me3) were identified in the <it>THBS-1 </it>promoter region in the LA1-55n cells, but not the LA1-5s cells. In contrast, the three histone codes associated with an active chromatin state (acetyl H3, acetyl H4, and H3K4Me3) were present in the <it>THBS-1 </it>promoter region in LA1-5s cells, but not the LA1-55n cells, suggesting that an accessible chromatin structure is important for <it>THBS-1 </it>expression. We also show that 5-Aza-dC treatment of LA1-55n cells alters the DNA methylation status and the histone code in the <it>THBS-1 </it>promoter modifies cell morphology, and inhibits their ability to form colonies in soft agar.</p> <p>Conclusion</p> <p>Our results suggest that epigenetic aberrations contribute to NB phenotype, and that tumorigenic properties can be inhibited by reversing the epigenetic changes with 5-Aza-dC.</p

    Effects of blood pressure and tranexamic acid in spontaneous intracerebral haemorrhage: a secondary analysis of a large randomised controlled trial

    Get PDF
    © Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY. Published by BMJ. https://creativecommons.org/licenses/by/4.0/. This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.[Background] Tranexamic acid reduced haematoma expansion and early death, but did not improve functional outcome in the tranexamic acid for hyperacute spontaneous intracerebral haemorrhage-2 (TICH-2) trial. In a predefined subgroup, there was a statistically significant interaction between prerandomisation baseline systolic blood pressure (SBP) and the effect of tranexamic acid on functional outcome (p=0.019).[Methods] TICH-2 was an international prospective double-blind placebo-controlled randomised trial evaluating intravenous tranexamic acid in patients with acute spontaneous intracerebral haemorrhage (ICH). Prerandomisation baseline SBP was split into predefined ≤170 and >170 mm Hg groups. The primary outcome at day 90 was the modified Rankin Scale (mRS), a measure of dependency, analysed using ordinal logistic regression. Haematoma expansion was defined as an increase in haematoma volume of >33% or >6 mL from baseline to 24 hours. Data are OR or common OR (cOR) with 95% CIs, with significance at p170 mm Hg. Tranexamic acid was associated with a favourable shift in mRS at day 90 in those with baseline SBP≤170 mm Hg (cOR 0.73, 95% CI 0.59 to 0.91, p=0.005), but not in those with baseline SBP>170 mm Hg (cOR 1.05, 95% CI 0.85 to 1.30, p=0.63). In those with baseline SBP≤170 mm Hg, tranexamic acid reduced haematoma expansion (OR 0.62, 95% CI 0.47 to 0.82, p=0.001), but not in those with baseline SBP>170 mm Hg (OR 1.02, 95% CI 0.77 to 1.35, p=0.90).[Conclusions] Tranexamic acid was associated with improved clinical and radiological outcomes in ICH patients with baseline SBP≤170 mm Hg. Further research is needed to establish whether certain subgroups may benefit from tranexamic acid in acute ICH.[Trial registration number] ISRCTN93732214.The National Institute of Health Research Health Technology Assessment Programme (11_129_109) and Swiss Heart Foundation.Peer reviewe

    Etoposide Induces ATM-Dependent Mitochondrial Biogenesis through AMPK Activation

    Get PDF
    DNA damage such as double-stranded DNA breaks (DSBs) has been reported to stimulate mitochondrial biogenesis. However, the underlying mechanism is poorly understood. The major player in response to DSBs is ATM (ataxia telangiectasia mutated). Upon sensing DSBs, ATM is activated through autophosphorylation and phosphorylates a number of substrates for DNA repair, cell cycle regulation and apoptosis. ATM has been reported to phosphorylate the alpha subunit of AMP-activated protein kinase (AMPK), which senses AMP/ATP ratio in cells, and can be activated by upstream kinases. Here we provide evidence for a novel role of ATM in mitochondrial biogenesis through AMPK activation in response to etoposide-induced DNA damage.Three pairs of human ATM+ and ATM- cells were employed. Cells treated with etoposide exhibited an ATM-dependent increase in mitochondrial mass as measured by 10-N-Nonyl-Acridine Orange and MitoTracker Green FM staining, as well as an increase in mitochondrial DNA content. In addition, the expression of several known mitochondrial biogenesis regulators such as the major mitochondrial transcription factor NRF-1, PGC-1alpha and TFAM was also elevated in response to etoposide treatment as monitored by RT-PCR. Three pieces of evidence suggest that etoposide-induced mitochondrial biogenesis is due to ATM-dependent activation of AMPK. First, etoposide induced ATM-dependent phosphorylation of AMPK alpha subunit at Thr172, indicative of AMPK activation. Second, inhibition of AMPK blocked etoposide-induced mitochondrial biogenesis. Third, activation of AMPK by AICAR (an AMP analogue) stimulated mitochondrial biogenesis in an ATM-dependent manner, suggesting that ATM may be an upstream kinase of AMPK in the mitochondrial biogenesis pathway.These results suggest that activation of ATM by etoposide can lead to mitochondrial biogenesis through AMPK activation. We propose that ATM-dependent mitochondrial biogenesis may play a role in DNA damage response and ROS regulation, and that defect in ATM-dependent mitochondrial biogenesis could contribute to the manifestations of A-T disease

    A Giant Planet Candidate Transiting a White Dwarf

    Full text link
    Astronomers have discovered thousands of planets outside the solar system, most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by the star, but more distant planets can survive this phase and remain in orbit around the white dwarf. Some white dwarfs show evidence for rocky material floating in their atmospheres, in warm debris disks, or orbiting very closely, which has been interpreted as the debris of rocky planets that were scattered inward and tidally disrupted. Recently, the discovery of a gaseous debris disk with a composition similar to ice giant planets demonstrated that massive planets might also find their way into tight orbits around white dwarfs, but it is unclear whether the planets can survive the journey. So far, the detection of intact planets in close orbits around white dwarfs has remained elusive. Here, we report the discovery of a giant planet candidate transiting the white dwarf WD 1856+534 (TIC 267574918) every 1.4 days. The planet candidate is roughly the same size as Jupiter and is no more than 14 times as massive (with 95% confidence). Other cases of white dwarfs with close brown dwarf or stellar companions are explained as the consequence of common-envelope evolution, wherein the original orbit is enveloped during the red-giant phase and shrinks due to friction. In this case, though, the low mass and relatively long orbital period of the planet candidate make common-envelope evolution less likely. Instead, the WD 1856+534 system seems to demonstrate that giant planets can be scattered into tight orbits without being tidally disrupted, and motivates searches for smaller transiting planets around white dwarfs.Comment: 50 pages, 12 figures, 2 tables. Published in Nature on Sept. 17, 2020. The final authenticated version is available online at: https://www.nature.com/articles/s41586-020-2713-

    Genetic and Non-Genetic Influences during Pregnancy on Infant Global and Site Specific DNA Methylation: Role for Folate Gene Variants and Vitamin B12

    Get PDF
    Inter-individual variation in patterns of DNA methylation at birth can be explained by the influence of environmental, genetic and stochastic factors. This study investigates the genetic and non-genetic determinants of variation in DNA methylation in human infants. Given its central role in provision of methyl groups for DNA methylation, this study focuses on aspects of folate metabolism. Global (LUMA) and gene specific (IGF2, ZNT5, IGFBP3) DNA methylation were quantified in 430 infants by Pyrosequencing®. Seven polymorphisms in 6 genes (MTHFR, MTRR, FOLH1, CβS, RFC1, SHMT) involved in folate absorption and metabolism were analysed in DNA from both infants and mothers. Red blood cell folate and serum vitamin B12 concentrations were measured as indices of vitamin status. Relationships between DNA methylation patterns and several covariates viz. sex, gestation length, maternal and infant red cell folate, maternal and infant serum vitamin B12, maternal age, smoking and genotype were tested. Length of gestation correlated positively with IGF2 methylation (rho = 0.11, p = 0.032) and inversely with ZNT5 methylation (rho = −0.13, p = 0.017). Methylation of the IGFBP3 locus correlated inversely with infant vitamin B12 concentration (rho = −0.16, p = 0.007), whilst global DNA methylation correlated inversely with maternal vitamin B12 concentrations (rho = 0.18, p = 0.044). Analysis of common genetic variants in folate pathway genes highlighted several associations including infant MTRR 66G>A genotype with DNA methylation (χ2 = 8.82, p = 0.003) and maternal MTHFR 677C>T genotype with IGF2 methylation (χ2 = 2.77, p = 0.006). These data support the hypothesis that both environmental and genetic factors involved in one-carbon metabolism influence DNA methylation in infants. Specifically, the findings highlight the importance of vitamin B12 status, infant MTRR genotype and maternal MTHFR genotype, all of which may influence the supply of methyl groups for DNA methylation. In addition, gestational length appears to be an important determinant of infant DNA methylation patterns
    • …
    corecore