4 research outputs found

    Data from: Genetic evidence of hybridization between the critically endangered Cuban crocodile and the American crocodile: implications for population history and in situ/ex situ conservation

    No full text
    Inter-specific hybridization may be especially detrimental when one species is extremely rare and the other is abundant owing to the potential for genetic swamping. The Cuban crocodile (Crocodylus rhombifer) is a critically endangered island endemic largely restricted to Zapata Swamp, where it is sympatric with the widespread American crocodile (C. acutus). An on-island, C. rhombifer captive breeding program is underway with the goals of maintaining taxonomic integrity and providing a source of individuals for reintroduction, but its conservation value is limited by lack of genetic information. Here we collected mtDNA haplotypic and nuclear genotypic data from wild and captive C. rhombifer and C. acutus in Cuba to: (1) investigate the degree of inter-specific hybridization in natural (in situ) and captive (ex situ) populations; (2) quantify the extent, distribution and in situ representation of genetic variation ex situ; and (3) reconstruct founder relatedness to inform management. We found high levels of hybridization in the wild (49.1%) and captivity (16.1%), and additional evidence for a cryptic lineage of C. acutus in the Antilles. We detected marginally higher observed heterozygosity and allelic diversity ex situ relative to the wild population, with captive C. rhombifer exhibiting over twice the frequency of private alleles. Although mean relatedness was high in captivity, we identified 37 genetically important individuals that possessed individual mean kinship (MK) values lower than the population MK. Overall, these results will guide long-term conservation management of Cuban crocodiles for maintaining the genetic integrity and viability of this species of high global conservation value

    Genetic evidence for multiple paternity in the critically endangered Cuban crocodile (Crocodylus rhombifer)

    No full text
    Conservation strategies can be most effective when factors influencing the persistence of populations are well-understood, including aspects of reproductive biology such as mating system. Crocodylians have been traditionally associated with a polygynous mating system, with genetic studies revealing multiple paternity of clutches in several species. The endemic Cuban crocodile, <i>Crocodylus rhombifer</i>, is currently listed as Critically Endangered, and is one of the least understood crocodylian species in terms of its mating behavior. Here, we tested a hypothesis of multiple paternity in the Cuban crocodile by collecting genotypic data at nine microsatellite loci for 102 hatchlings from five nests sampled at the Zapata Swamp captive breeding facility and analyzing them in relation to data previously collected for 137 putative parents. All five nests showed evidence of multiple paternity based on the numbers of alleles per locus, with sibship analyses reconstructing all nests as having four to six full-sib family groups. Accordingly, mean pairwise relatedness values per nest ranged from 0.21 to 0.39, largely intermediate between theoretical expected values for half-siblings (0.25) and full-siblings (0.50). It is not possible to differentiate whether the multiple paternity of a nest was due to multiple matings during the same breeding season, or a result of sperm storage. Our results reveal that the <i>C. rhombifer</i> mating system is likely best characterized as promiscuous and suggest that the standard practice of enforcing a 1:2 sex ratio at the captive breeding facility should be altered in order to better maintain a demographically and genetically healthy ex situ population
    corecore