15 research outputs found

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Preclinical murine tumor models: a structural and functional perspective.

    No full text
    The goal of this review is to pinpoint the specific features, including the weaknesses, of various tumor models, and to discuss the reasons why treatments that are efficient in murine tumor models often do not work in clinics. In a detailed comparison of transplanted and spontaneous tumor models, we focus on structure-function relationships in the tumor microenvironment. For instance, the architecture of the vascular tree, which depends on whether tumor cells have gone through epithelial-mesenchymal transition, is determinant for the extension of the spontaneous necrosis, and for the intratumoral localization of the immune infiltrate. Another key point is the model-dependent abundance of TGFβ in the tumor, which controls the variable susceptibility of different tumor models to treatments. Grounded in a historical perspective, this review provides a rationale for checking factors that will be key for the transition between preclinical murine models and clinical applications

    Statistical interpretation and modelling of daily permeability evolution in full-scale membrane bioreactors using fuzzy inference methods

    No full text
    International audienceA fuzzy inference method was used to model the fouling evolution of a full-scale Membrane Bioreactor (MBR) treating rejection water from the sludge treatment of a water resource recovery facility (WRRF), using a dataset of 1.5 years. The six generated fuzzy rules replicate the fouling evolution with a promising correlation coefficient of 0.7

    All trans-retinoic acid selectively down-regulates matrix metalloproteinase-9 (MMP-9) and up-regulates tissue inhibitor of metalloproteinase-1 (TIMP-1) in human bronchoalveolar lavage cells.

    No full text
    BACKGROUND: The balance between proteinases and antiproteinases plays an important role in tissue destruction and remodelling. In chronic obstructive pulmonary disease (COPD) and emphysema, an imbalance between matrix metalloproteinases (MMPs) and inhibitors of tissue metalloproteinase (TIMPs) has been reported. Alveolar macrophages are considered to be the main source of MMPs. We therefore have analyzed the effects of free and liposomal all trans-retinoic acid (ATRA) on the expression of MMP-9 and TIMP-1 in bronchoalveolar lavage (BAL) cells from patients with COPD and patients with other lung diseases. MATERIAL AND METHODS: BAL cells were incubated 1-3 day with either liposomal or free ATRA. Supernatants were tested for MMP-9 and TIMP-1 protein in specific ELISA systems; mRNA analysis was performed by semi-quantitative RT-PCR and by quantitative LightCycler PCR. RESULTS: We demonstrate that either liposomal or free ATRA selectively down-regulates MMP-9 and up-regulates TIMP-1. At the protein level, MMP-9 is decreased 3-fold and TIMP-1 is increased 3.5-fold compared to the base line with empty liposomes or untreated cells. The ratio of MMP-9 and its inhibitor TIMP-1, which may be crucial to the overall proteolytic potential decreased by factor 8. That this countercurrent effect of ATRA is not due to an altered protein stability but to transcriptional regulation could be demonstrated by RT-PCR. Quantitative LightCycler analysis revealed a 2.5-fold decrease of MMP-9 mRNA and a 4.5 fold increase of TIMP- 1 mRNA. CONCLUSIONS: These data suggest that ATRA treatment via its impact on the proteinase/antiproteinase ratio may become a new therapeutic strategy for patients with inflammatory destructive lung diseases

    Poly(hydroxyalkanoate) Block or Random Copolymers of β-Butyrolactone and Benzyl β-Malolactone: A Matter of Catalytic Tuning.

    No full text
    International audienceThe controlled copolymn. of racemic β-butyrolactone (BL) and racemic benzyl β-malolactonate (MLABe) has been achieved under mild operating conditions (in bulk at 60 °C) with various systems derived either from a metal-based (pre)-catalyst assocd. with isopropanol (iPrOH) acting as a co-initiator and a chain transfer agent or more simply from a neat basic organocatalyst. Among the metallic systems evaluated, only the neodymium triflate-based catalyst system, Nd-(OTf)3/iPrOH, enabled the prepn., upon simultaneous addn. of the two monomers, of poly-(benzyl β-malolactonate-ran-β-butyrolactone) random copolymers (P-(MLABe-ran-BL)) with Mn,NMR up to 5800 g mol-1 (DM = ca. 1.4) as evidenced by 1H and 13C NMR. Simultaneous copolymn. of the comonomers mediated by the zinc β-diketiminate [(BDI)-Zn-\N-(SiMe3)2\]/iPrOH system only afforded PMLABe, leaving BL unreacted. Also, the sequential copolymn. with this zinc catalyst proceeded effectively only when BL was introduced prior to MLABe. In contrast, both the Nd-based system and basic organocatalysts of the guanidine (1,5,7-triazabicyclo[4.4.0]-dec-5-ene, TBD), amidine (1,8-diazabicyclo[5.4.0]-undec-7-ene, DBU), and phosphazene (2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine, BEMP) type effectively copolymd. MLABe and BL in a sequential approach, regardless of the order of comonomers addn., forming the corresponding P-(MLABe-b-BL) block copolymers, with segments of significant length (ca. 88 BL and 360 MLABe units; Mn,NMR up to 73 500 g mol-1 with DM = 1.44). Remarkably, BEMP afforded P-(MLABe-b-BL) from either a simultaneous or a sequential approach and regardless of the order of the comonomers addn. Kinetic and microstructural control in copolymn. of MLABe and BL can thus be achieved via catalytic tuning. [on SciFinder(R)
    corecore