58 research outputs found

    Climate shapes community flowering periods across biomes

    Get PDF
    Aim: Climate shapes the composition and function of plant communities globally, but it remains unclear how this influence extends to floral traits. Flowering phenology, or the time period in which a species flowers, has well-studied relationships with climatic signals at the species level but has rarely been explored at a cross-community and continental scale. Here, we characterise the distribution of flowering periods (months of flowering) across continental plant communities encompassing six biomes, and determine the influence of climate on community flowering period lengths. Location: Australia. Taxon: Flowering plants. Methods: We combined plant composition and abundance data from 629 standardised floristic surveys (AusPlots) with data on flowering period from the AusTraits database and additional primary literature for 2983 species. We assessed abundance-weighted community mean flowering periods across biomes and tested their relationship with climatic annual means and the predictability of climate conditions using regression models. Results: Combined, temperature and precipitation (annual mean and predictability) explain 29% of variation in continental community flowering period. Plant communities with higher mean temperatures and lower mean precipitation have longer mean flowering periods. Moreover, plant communities in climates with predictable temperatures and, to a lesser extent, predictable precipitation have shorter mean flowering periods. Flowering period varies by biome, being longest in deserts and shortest in alpine and montane communities. For instance, desert communities experience low and unpredictable precipitation and high, unpredictable temperatures and have longer mean flowering periods, with desert species typically flowering at any time of year in response to rain. Main conclusions: Current climate conditions shape flowering periods across biomes, with implications for phenology under climate change. Shifts in flowering periods across climatic gradients reflect changes in plant strategies, affecting patterns of plant growth and reproduction as well as the availability of floral resources for pollinators across the landscape

    Effective ecosystem monitoring requires a multi-scaled approach

    Get PDF
    Ecosystem monitoring is fundamental to our understanding of how ecosystem change is impacting our natural resources and is vital for developing evidence-based policy and management. However, the different types of ecosystem monitoring, along with their recommended applications, are often poorly understood and contentious. Varying definitions and strict adherence to a specific monitoring type can inhibit effective ecosystem monitoring, leading to poor program development, implementation and outcomes. In an effort to develop a more consistent and clear understanding of ecosystem monitoring programs, we here review the main types of monitoring and recommend the widespread adoption of three classifications of monitoring, namely, targeted, surveillance and landscape monitoring. Landscape monitoring is conducted over large areas, provides spatial data, and enables questions relating to where and when ecosystem change is occurring to be addressed. Surveillance monitoring uses standardised field methods to inform on what is changing in our environments and the direction and magnitude of that change, whilst targeted monitoring is designed around testable hypotheses over defined areas and is the best approach for determining the causes of ecosystem change. The classification system is flexible and can incorporate different interests, objectives, targets and characteristics as well as different spatial scales and temporal frequencies, while also providing valuable structure and consistency across distinct ecosystem monitoring programs. To support our argument, we examine the ability of each monitoring type to inform on six key types of questions that are routinely posed for ecosystem monitoring programs, such as where and when change is occurring, what is the magnitude of change, and how can the change be managed? As we demonstrate, each type of ecosystem monitoring has its own strengths and weaknesses, which should be carefully considered relative to the desired results. Using this scheme, scientists and land managers can design programs best suited to their needs. Finally, we assert that for our most serious environmental challenges, it is essential that we include information from each of these monitoring scales to inform on all facets of ecosystem change, and this is best achieved through close collaboration between the scales. With a renewed understanding of the importance of each monitoring type, along with greater commitment to monitor cooperatively, we will be well placed to address some of our greatest environmental challenges

    Bioclimatic transect networks: Powerful observatories of ecological change

    Get PDF
    Transects that traverse substantial climate gradients are important tools for climate change research and allow questions on the extent to which phenotypic variation associates with climate, the link between climate and species distributions, and variation in sensitivity to climate change among biomes to be addressed. However, the potential limitations of individual transect studies have recently been highlighted. Here, we argue that replicating and networking transects, along with the introduction of experimental treatments, addresses these concerns. Transect networks provide cost-effective and robust insights into ecological and evolutionary adaptation and improve forecasting of ecosystem change. We draw on the experience and research facilitated by the Australian Transect Network to demonstrate our case, with examples, to clarify how population- and community-level studies can be integrated with observations from multiple transects, manipulative experiments, genomics, and ecological modeling to gain novel insights into how species and systems respond to climate change. This integration can provide a spatiotemporal understanding of past and future climate-induced changes, which will inform effective management actions for promoting biodiversity resilience

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Brutalisation as a Survival Strategy: How the 'Islamic State' Is Prolonging Its Doomsday Battle

    Full text link
    The recent bomb attacks at the Istanbul airport (28 June 2016), in a tourist cafe in Dhaka, Bangladesh (2 July), and in Bagdad (3 July) were part of a "Ramadan campaign" announced by the spokesman of the self-declared 'Islamic State' caliphate in late May 2016. This series of attacks was intended to make the Islamic holy month of Ramadan "a month of calamity everywhere for the non-believers." It has generated significant international attention for an organisation which has recently lost the cities of Ramadi and Falluja in Iraq and which is under serious pressure in the strategic city of Manbij in Syria. This article analyses the Islamic State's (IS) contextual use of different forms of violence and argues that the attacks and the defeats are two sides of one coin: the group is losing territory and credibility by failing to continue with its expansion of the universal Islamic caliphate that "Caliph" Abu Bakr promised in summer 2014; it is now compensating for these territorial losses by expanding its field of action through terrorist attacks, thereby suggesting a fictitious expansion. The article explains how the group has exhibited a three-stage "cycle of violence" in which violence has served specific functions. In the first stage, from roughly 2003 to 2010, violence was used as part of a mobilisation strategy. In the second stage, from 2010 to 2015, violence served mainly to facilitate the group's expansion and rule. In the third stage, which began in 2015, the increasingly brutal violence and the fictitious expansion have constituted the centrepiece of a survival strategy. Against this background, the article suggests that the Islamic State will most likely not have a future as a territorial entity but will, at best, survive as a terrorist apocalyptic sect

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Rest of authors: Decky Junaedi, Robert R. Junker, Eric Justes, Richard Kabzems, Jeffrey Kane, Zdenek Kaplan, Teja Kattenborn, Lyudmila Kavelenova, Elizabeth Kearsley, Anne Kempel, Tanaka Kenzo, Andrew Kerkhoff, Mohammed I. Khalil, Nicole L. Kinlock, Wilm Daniel Kissling, Kaoru Kitajima, Thomas Kitzberger, Rasmus KjĂžller, Tamir Klein, Michael Kleyer, Jitka KlimeĆĄovĂĄ, Joice Klipel, Brian Kloeppel, Stefan Klotz, Johannes M. H. Knops, Takashi Kohyama, Fumito Koike, Johannes Kollmann, Benjamin Komac, Kimberly Komatsu, Christian König, Nathan J. B. Kraft, Koen Kramer, Holger Kreft, Ingolf KĂŒhn, Dushan Kumarathunge, Jonas Kuppler, Hiroko Kurokawa, Yoko Kurosawa, Shem Kuyah, Jean-Paul Laclau, Benoit Lafleur, Erik Lallai, Eric Lamb, Andrea Lamprecht, Daniel J. Larkin, Daniel Laughlin, Yoann Le Bagousse-Pinguet, Guerric le Maire, Peter C. le Roux, Elizabeth le Roux, Tali Lee, Frederic Lens, Simon L. Lewis, Barbara Lhotsky, Yuanzhi Li, Xine Li, Jeremy W. Lichstein, Mario Liebergesell, Jun Ying Lim, Yan-Shih Lin, Juan Carlos Linares, Chunjiang Liu, Daijun Liu, Udayangani Liu, Stuart Livingstone, Joan LlusiĂ , Madelon Lohbeck, Álvaro LĂłpez-GarcĂ­a, Gabriela Lopez-Gonzalez, Zdeƈka LososovĂĄ, FrĂ©dĂ©rique Louault, BalĂĄzs A. LukĂĄcs, Petr LukeĆĄ, Yunjian Luo, Michele Lussu, Siyan Ma, Camilla Maciel Rabelo Pereira, Michelle Mack, Vincent Maire, Annikki MĂ€kelĂ€, Harri MĂ€kinen, Ana Claudia Mendes Malhado, Azim Mallik, Peter Manning, Stefano Manzoni, Zuleica Marchetti, Luca Marchino, Vinicius Marcilio-Silva, Eric Marcon, Michela Marignani, Lars Markesteijn, Adam Martin, Cristina MartĂ­nez-Garza, Jordi MartĂ­nez-Vilalta, Tereza MaĆĄkovĂĄ, Kelly Mason, Norman Mason, Tara Joy Massad, Jacynthe Masse, Itay Mayrose, James McCarthy, M. Luke McCormack, Katherine McCulloh, Ian R. McFadden, Brian J. McGill, Mara Y. McPartland, Juliana S. Medeiros, Belinda Medlyn, Pierre Meerts, Zia Mehrabi, Patrick Meir, Felipe P. L. Melo, Maurizio Mencuccini, CĂ©line Meredieu, Julie Messier, Ilona MĂ©szĂĄros, Juha Metsaranta, Sean T. Michaletz, Chrysanthi Michelaki, Svetlana Migalina, Ruben Milla, Jesse E. D. Miller, Vanessa Minden, Ray Ming, Karel Mokany, Angela T. Moles, Attila MolnĂĄr V, Jane Molofsky, Martin Molz, Rebecca A. Montgomery, Arnaud Monty, Lenka MoravcovĂĄ, Alvaro Moreno-MartĂ­nez, Marco Moretti, Akira S. Mori, Shigeta Mori, Dave Morris, Jane Morrison, Ladislav Mucina, Sandra Mueller, Christopher D. Muir, Sandra Cristina MĂŒller, François Munoz, Isla H. Myers-Smith, Randall W. Myster, Masahiro Nagano, Shawna Naidu, Ayyappan Narayanan, Balachandran Natesan, Luka Negoita, Andrew S. Nelson, Eike Lena Neuschulz, Jian Ni, Georg Niedrist, Jhon Nieto, Ülo Niinemets, Rachael Nolan, Henning Nottebrock, Yann Nouvellon, Alexander Novakovskiy, The Nutrient Network, Kristin Odden Nystuen, Anthony O'Grady, Kevin O'Hara, Andrew O'Reilly-Nugent, Simon Oakley, Walter Oberhuber, Toshiyuki Ohtsuka, Ricardo Oliveira, Kinga Öllerer, Mark E. Olson, Vladimir Onipchenko, Yusuke Onoda, Renske E. Onstein, Jenny C. Ordonez, Noriyuki Osada, Ivika Ostonen, Gianluigi Ottaviani, Sarah Otto, Gerhard E. Overbeck, Wim A. Ozinga, Anna T. Pahl, C. E. Timothy Paine, Robin J. Pakeman, Aristotelis C. Papageorgiou, Evgeniya Parfionova, Meelis PĂ€rtel, Marco Patacca, Susana Paula, Juraj Paule, Harald Pauli, Juli G. Pausas, Begoña Peco, Josep Penuelas, Antonio Perea, Pablo Luis Peri, Ana Carolina Petisco-Souza, Alessandro Petraglia, Any Mary Petritan, Oliver L. Phillips, Simon Pierce, ValĂ©rio D. Pillar, Jan Pisek, Alexandr Pomogaybin, Hendrik Poorter, Angelika Portsmuth, Peter Poschlod, Catherine Potvin, Devon Pounds, A. Shafer Powell, Sally A. Power, Andreas Prinzing, Giacomo Puglielli, Petr PyĆĄek, Valerie Raevel, Anja Rammig, Johannes Ransijn, Courtenay A. Ray, Peter B. Reich, Markus Reichstein, Douglas E. B. Reid, Maxime RĂ©jou-MĂ©chain, Victor Resco de Dios, Sabina Ribeiro, Sarah Richardson, Kersti Riibak, Matthias C. Rillig, Fiamma Riviera, Elisabeth M. R. Robert, Scott Roberts, Bjorn Robroek, Adam Roddy, Arthur Vinicius Rodrigues, Alistair Rogers, Emily Rollinson, Victor Rolo, Christine Römermann, Dina Ronzhina, Christiane Roscher, Julieta A. Rosell, Milena Fermina Rosenfield, Christian Rossi, David B. Roy, Samuel Royer-Tardif, Nadja RĂŒger, Ricardo Ruiz-Peinado, Sabine B. Rumpf, Graciela M. Rusch, Masahiro Ryo, Lawren Sack, Angela Saldaña, Beatriz Salgado-Negret, Roberto Salguero-Gomez, Ignacio Santa-Regina, Ana Carolina Santacruz-GarcĂ­a, Joaquim Santos, Jordi Sardans, Brandon Schamp, Michael Scherer-Lorenzen, Matthias Schleuning, Bernhard Schmid, Marco Schmidt, Sylvain Schmitt, Julio V. Schneider, Simon D. Schowanek, Julian Schrader, Franziska Schrodt, Bernhard Schuldt, Frank Schurr, Galia Selaya Garvizu, Marina Semchenko, Colleen Seymour, Julia C. Sfair, Joanne M. Sharpe, Christine S. Sheppard, Serge Sheremetiev, Satomi Shiodera, Bill Shipley, Tanvir Ahmed Shovon, Alrun SiebenkĂ€s, Carlos Sierra, Vasco Silva, Mateus Silva, Tommaso Sitzia, Henrik Sjöman, Martijn Slot, Nicholas G. Smith, Darwin Sodhi, Pamela Soltis, Douglas Soltis, Ben Somers, GrĂ©gory Sonnier, Mia Vedel SĂžrensen, Enio Egon Sosinski Jr, Nadejda A. Soudzilovskaia, Alexandre F. Souza, Marko Spasojevic, Marta Gaia Sperandii, Amanda B. Stan, James Stegen, Klaus Steinbauer, Jörg G. Stephan, Frank Sterck, Dejan B. Stojanovic, Tanya Strydom, Maria Laura Suarez, Jens-Christian Svenning, Ivana SvitkovĂĄ, Marek Svitok, Miroslav Svoboda, Emily Swaine, Nathan Swenson, Marcelo Tabarelli, Kentaro Takagi, Ulrike Tappeiner, RubĂ©n Tarifa, Simon Tauugourdeau, Cagatay Tavsanoglu, Mariska te Beest, Leho Tedersoo, Nelson Thiffault, Dominik Thom, Evert Thomas, Ken Thompson, Peter E. Thornton, Wilfried Thuiller, LubomĂ­r TichĂœ, David Tissue, Mark G. Tjoelker, David Yue Phin Tng, Joseph Tobias, PĂ©ter Török, Tonantzin Tarin, JosĂ© M. Torres-Ruiz, BĂ©la TĂłthmĂ©rĂ©sz, Martina Treurnicht, Valeria Trivellone, Franck Trolliet, Volodymyr Trotsiuk, James L. Tsakalos, Ioannis Tsiripidis, Niklas Tysklind, Toru Umehara, Vladimir Usoltsev, Matthew Vadeboncoeur, Jamil Vaezi, Fernando Valladares, Jana Vamosi, Peter M. van Bodegom, Michiel van Breugel, Elisa Van Cleemput, Martine van de Weg, Stephni van der Merwe, Fons van der Plas, Masha T. van der Sande, Mark van Kleunen, Koenraad Van Meerbeek, Mark Vanderwel, Kim AndrĂ© Vanselow, Angelica VĂ„rhammar, Laura Varone, Maribel Yesenia Vasquez Valderrama, Kiril Vassilev, Mark Vellend, Erik J. Veneklaas, Hans Verbeeck, Kris Verheyen, Alexander Vibrans, Ima Vieira, Jaime VillacĂ­s, Cyrille Violle, Pandi Vivek, Katrin Wagner, Matthew Waldram, Anthony Waldron, Anthony P. Walker, Martyn Waller, Gabriel Walther, Han Wang, Feng Wang, Weiqi Wang, Harry Watkins, James Watkins, Ulrich Weber, James T. Weedon, Liping Wei, Patrick Weigelt, Evan Weiher, Aidan W. Wells, Camilla Wellstein, Elizabeth Wenk, Mark Westoby, Alana Westwood, Philip John White, Mark Whitten, Mathew Williams, Daniel E. Winkler, Klaus Winter, Chevonne Womack, Ian J. Wright, S. Joseph Wright, Justin Wright, Bruno X. Pinho, Fabiano Ximenes, Toshihiro Yamada, Keiko Yamaji, Ruth Yanai, Nikolay Yankov, Benjamin Yguel, KĂĄtia Janaina Zanini, Amy E. Zanne, David ZelenĂœ, Yun-Peng Zhao, Jingming Zheng, Ji Zheng, Kasia ZiemiƄska, Chad R. Zirbel, Georg Zizka, IriĂ© Casimir Zo-Bi, Gerhard Zotz, Christian Wirth.Max Planck Institute for Biogeochemistry; Max Planck Society; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; International Programme of Biodiversity Science (DIVERSITAS); International Geosphere-Biosphere Programme (IGBP); Future Earth; French Foundation for Biodiversity Research (FRB); GIS ‘Climat, Environnement et SociĂ©tĂ©'.http://wileyonlinelibrary.com/journal/gcbhj2021Plant Production and Soil Scienc

    Mapping phylogenetic endemism in R using georeferenced branch extents

    Get PDF
    Applications are needed to map biodiversity from large-scale species occurrence datasets whilst seamlessly integrating with existing functions in R. Phylogenetic endemism (PE) is a biodiversity measure based on range-restricted phylogenetic diversity (PD). Current implementations use area of occupancy (AOO) or frequency to estimate the spatial range of branch-length (i.e.  phylogenetic range-rarity), rather than extent of occurrence (EOO; i.e.  georeferenced phylogenetic endemism), which is known to produce different range estimates. We present R functions to map PD or PE weighted by AOO or EOO (new georeferenced implementation), taking as inputs georeferenced species occurrences and a phylogeny. Non-parametric statistics distinguish PD/PE from trivial correlates of species richness and sampling intensity. Keywords: Phylogenetic diversity, Phylogenetic endemism, Area of occupancy, Extent of occurrence, Minimum convex polygon, R function, Non-parametric statistics, Interquartile rang

    Identifying Centres of Plant Biodiversity in South Australia.

    Get PDF
    We aimed to identify regional centres of plant biodiversity in South Australia, a sub-continental land area of 983,482 km2, by mapping a suite of metrics. Broad-brush conservation issues associated with the centres were mapped, specifically climate sensitivity, exposure to habitat fragmentation, introduced species and altered fire regimes. We compiled 727,417 plant species records from plot-based field surveys and herbarium records and mapped the following: species richness (all species; South Australian endemics; conservation-dependent species; introduced species); georeferenced weighted endemism, phylogenetic diversity, georeferenced phylogenetic endemism; and measures of beta diversity at local and state-wide scales. Associated conservation issues mapped were: climate sensitivity measured via ordination and non-linear modelling; habitat fragmentation represented by the proportion of remnant vegetation within a moving window; fire prone landscapes assessed using fire history records; invasive species assessed through diversity metrics, species distribution and literature. Compared to plots, herbarium data had higher spatial and taxonomic coverage but records were more biased towards major transport corridors. Beta diversity was influenced by sampling intensity and scale of comparison. We identified six centres of high plant biodiversity for South Australia: Western Kangaroo Island; Southern Mount Lofty Ranges; Anangu Pitjantjatjara Yankunytjatjara lands; Southern Flinders Ranges; Southern Eyre Peninsula; Lower South East. Species composition in the arid-mediterranean ecotone was the most climate sensitive. Fragmentation mapping highlighted the dichotomy between extensive land-use and high remnancy in the north and intensive land-use and low remnancy in the south. Invasive species were most species rich in agricultural areas close to population centres. Fire mapping revealed large variation in frequency across the state. Biodiversity scores were not always congruent between metrics or datasets, notably for categorical endemism to South Australia versus georeferenced weighted endemism, justifying diverse approaches and cautious interpretation. The study could be extended to high resolution assessments of biodiversity centres and cost:benefit analysis for interventions

    Mericarp morphology and its systematic implications for the genus Salvia L. section Hymenosphace Benth. (Lamiaceae) in Turkey

    No full text
    Mericarp morphology of 15 taxa of Salvia L. section Hymenosphace Benth. in Turkey were investigated by light microscopy (LM) and scanning electron microscopy (SEM) to evaluate the utility of mericarp characters in systematic studies. Mericarps ranged from 2.50 to 5.38 mm in length and 2.04 to 4.70 mm in width. Mericarp shape was prolate-spheroid or near spherical with a length-to-width ratio of 1.02-1.48. Transverse sections of the mericarps were rounded or rounded-trigonous. Mericarp surfaces presented colliculate, reticulate, verrucate or foveate sculpturing patterns, mostly as a result of the sculpturing of the exocarp cell walls with the pattern determined by whether the periclinal walls were concave or convex and whether the anticlinal walls were raised or sunken. Colliculate surface sculpturing (periclinal walls convex) was the most common among the taxa examined. The variation in the nature of surface sculpturing, mericarp shape and size, exocarp cell shape, nature of transverse sections and abscission scar diameter proved useful diagnostic characters. Variation was sufficient to distinguish taxa at species level, including morphologically similar species. Data provided here are also relevant to phylogenetic questions at higher levels within Salvia

    The biodiversity impacts of non-native species should not be extrapolated from biased single-species studies

    No full text
    The presence, diversity and abundance of non-native plant species in natural vegetation are common condition indicators used to determine conservation status, with consequences for management strategies and investment. The rationale behind non-native species metrics as condition indicators is the assumption that non-natives have negative consequences on native biodiversity and habitat condition. The case against non-native species is not so clear-cut, with some studies reporting neutral or even facilitative interactions, often depending on spatial scale. Observational and experimental evaluations of the impact of particular non-native species on biodiversity provide a vital evidence-base for general conservation management strategies. Unintentionally though, many studies that quantify the impacts of non-native species have resulted in a publication bias in which species with known impacts are selected for investigation far more often than benign species. Here we argue that meta-analyses of the impacts of individual non-native species on natives, no matter how meticulous or objective, should not be generalized beyond the set of ‘training’ species. The likelihood of such extrapolation is increased when meta-analyses are reported with little qualification as to the skewed sampling towards problematic species, and because alternative findings such as non-native assemblages having positive interactions with native biodiversity, are under-reported. To illustrate, we discuss two meta-analyses that make general conclusions from impact studies skewed towards ‘transformers’, the most extreme invaders. We warn that if generic non-native species management strategies were to be based on these conclusions, they could not only fail to meet objectives but in some instances harm native biodiversity.We thank the Terrestrial Ecosystem Research Network supported by the Australian Government through the National Collaborative Research Infrastructure Strategy.Peer Reviewe
    • 

    corecore