13 research outputs found

    Contribution of [64Cu]-ATSM PET in molecular imaging of tumour hypoxia compared to classical [18F]-MISO — a selected review

    Get PDF
    During the carcinogenesis process, tumour cells often have a more rapid proliferation potential than cells that participate in blood capillary formation by neoangiogenesis. As a consequence of the poorly organized vasculature of various solid tumours, a limited oxygen delivery is observed. This hypoxic mechanism frequently occurs in solid cancers and can lead to therapeutic resistance. The present selected literature review is focused on the comparison of two positron emitting radiopharmaceuticals agents, which are currently leaders in tumour hypoxia imaging by PET. {18F}-fluoromisonidazole (= FMISO) is most commonly used as an investigational PET agent with an investigational new drug exemption from the FDA, while {64Cu}-diacetyl-bis(N4-methylthiosemicarbazone) (64Cu-ATSM) has been presented as an alternative radiopharmaceutical not yet readily available. The comparison of these two radiopharmaceutical agents is particularly focused on isotope properties, radiopharmaceutical labelling process, pharmacological mechanisms, dosimetry data in patients, and clinical results in terms of image contrast. PET imaging has demonstrated a good efficacy in tumour hypoxia imaging with both FMISO and Cu-ATSM, but FMISO has presented too slow an in vivo accumulation and a weak image contrast of the hypoxia area. Despite a less favourable dosimetry, 64Cu-ATSM appears superior in terms of imaging performance, calling for industrial and clinical development of this innovative radiopharmaceutical. Nuclear Med Rev 2011; 14, 2: 90–9

    COST Action CA19114, Network for Optimized Astatine labelled Radiopharmaceuticals

    Get PDF
    Cancer is a major health concerns for European citizens. Thus, the main research aim of this Network for Optimized Astatine labeled Radiopharmaceuticals (NOAR) COST Action is to successfully demonstrate that one of the most promising radionuclides for Targeted Alpha Therapy (TAT), namely astatine-211, can become the European standard for treatment of certain cancerous pathologies. To this end, an efficient networking is essential among all European stakeholders interested in promoting astatine-211 for medical applications. NOAR COST Action brings together European and international excellence labs, astatine-211 production centers, hospitals, industry and patient associations from more than 20 countries, thus covering the whole value chain of innovation: production, chemistry, radiochemistry, biology, preclinical and clinical research and delivery of radiopharmaceuticals to patients. A European web portal will be created containing information for patients, practitioners, researchers, Industry and as a contact point for National and European patient associations. The idea is to gather forces at the European level in order to implement actions to leverage hurdles to the development of this powerful radionuclide and to identify pathologies in which it will be particularly relevant. A special emphasis will be given to train a new generation of young researchers and PhD students, promoting interdisciplinary competencies through international and inter-sectoral mobility. The long-term goal of this project is to make Astatine-211 technology available to all European citizen

    Recognition and Significance of Pathological T-Wave Inversions in Athletes

    No full text
    Background-Pathological T-wave inversion (PTWI) is rarely observed on the ECG of healthy athletes, whereas it is common in patients with certain cardiac diseases. All ECG interpretation guidelines for use within athletes state that PTWI (except in leads aVR, III and V1 and in V1-V4 when preceded by domed ST segment in asymptomatic Afro-Caribbean athletes only) cannot be considered a physiological adaptation. The aims of the present study were to prospectively determine the prevalence of cardiac pathology in athletes presenting with PTWI, and to examine the efficacy of cardiac magnetic resonance in the work-up battery of further examinations. Methods and Results-Athletes presenting with PTWI (n=155) were investigated with clinical examination, ECG, echocardiography, exercise testing, 24h Holter ECG, and cardiac magnetic resonance. Cardiac disease was established in 44.5% of athletes, with hypertrophic cardiomyopathy (81%) the most common pathology. Echocardiography was abnormal in 53.6% of positive cases, and cardiac magnetic resonance identified a further 24 athletes with disease. Five athletes (7.2%) considered normal on initial presentation subsequently expressed pathology during follow-up. Familial history of sudden cardiac death and ST-segment depression associated with PTWI were predictive of cardiac disease. Conclusions-PTWI should be considered pathological in all cases until proven otherwise, because it was associated with cardiac pathology in 45% of athletes. Despite echocardiography identifying pathology in half of these cases, cardiac magnetic resonance must be considered routine in athletes presenting with PTWI with normal echocardiography. Although exclusion from competitive sport is not warranted in the presence of normal secondary examinations, annual follow-up is essential to ascertain possible disease expression.</p

    In Vivo Efficacy of Ceftaroline Fosamil in a Methicillin-Resistant Panton-Valentine Leukocidin-Producing Staphylococcus aureus Rabbit Pneumonia Model.

    No full text
    International audienceCeftaroline, the active metabolite of the prodrug ceftaroline fosamil, is a cephalosporin with broad-spectrum in vitro activity against Gram-positive organisms, including methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Streptococcus pneumoniae (MDRSP), and common Gram-negative pathogens. This study investigated the in vivo activity of ceftaroline fosamil compared with clindamycin, linezolid, and vancomycin in a severe pneumonia model due to MRSA-producing Panton-Valentine leukocidin (PVL). A USA300 PVL-positive clone was used to induce pneumonia in rabbits. Infected rabbits were randomly assigned to no treatment or simulated human-equivalent dosing with ceftaroline fosamil, clindamycin, linezolid, or vancomycin. Residual bacterial concentrations in the lungs and spleen were assessed after 48 h of treatment. PVL expression was measured using a specific enzyme-linked immunosorbent assay (ELISA). Ceftaroline, clindamycin, and linezolid considerably reduced mortality rates compared with the control, whereas vancomycin did not. Pulmonary and splenic bacterial titers and PVL concentrations were greatly reduced by ceftaroline, clindamycin, and linezolid. Ceftaroline, clindamycin, and linezolid were associated with reduced pulmonary tissue damage based on significantly lower macroscopic scores. Ceftaroline fosamil, clindamycin, and, to a lesser extent, linezolid were efficient in reducing bacterial titers in both the lungs and spleen and decreasing macroscopic scores and PVL production compared with the control
    corecore