729 research outputs found

    Forward stagewise regression and the monotone lasso

    Full text link
    We consider the least angle regression and forward stagewise algorithms for solving penalized least squares regression problems. In Efron, Hastie, Johnstone & Tibshirani (2004) it is proved that the least angle regression algorithm, with a small modification, solves the lasso regression problem. Here we give an analogous result for incremental forward stagewise regression, showing that it solves a version of the lasso problem that enforces monotonicity. One consequence of this is as follows: while lasso makes optimal progress in terms of reducing the residual sum-of-squares per unit increase in L1L_1-norm of the coefficient β\beta, forward stage-wise is optimal per unit L1L_1 arc-length traveled along the coefficient path. We also study a condition under which the coefficient paths of the lasso are monotone, and hence the different algorithms coincide. Finally, we compare the lasso and forward stagewise procedures in a simulation study involving a large number of correlated predictors.Comment: Published at http://dx.doi.org/10.1214/07-EJS004 in the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Optimum Utilization of Positioning Data in SDS III

    Get PDF
    A new, computerized hydrographic data acquisition and processing system, Shipboard Data System III (SDS III), is being designed and built for use by the National Ocean Service. An integrated positioning and navigation system is a critical element of this development. Design features include the ability to benefit from time-deskewed multiple lines of position from mixed sensor types (both electronic and manual), difficult geometries, and the use of auxiliary speed and heading data in the application of advanced filtering and smoothing techniques for reduction of random measurement noise and recognition of bias errors. Results are highly accurate, stable, and robust. Measurement noise can be reduced by as much as a factor of three without adding significant biases, even on turns, while retaining actual random vessel motions. Operations can continue during complete losses of positioning data for limited but significant periods of time, including during maneuvers

    Inspiratory oscillatory flow with a portable ventilator: a bench study

    Get PDF
    INTRODUCTION: We observed an oscillatory flow while ventilating critically ill patients with the Dräger Oxylog 3000™ transport ventilator during interhospital transfer. The phenomenon occurred in paediatric patients or in adult patients with severe airway obstruction ventilated in the pressure-regulated or pressure-controlled mode. As this had not been described previously, we conducted a bench study to investigate the phenomenon. METHODS: An Oxylog 3000™ intensive care unit ventilator and a Dräger Medical Evita-4 NeoFlow™ intensive care unit ventilator were connected to a Dräger Medical LS800™ lung simulator. Data were registered by a Datex-S5™ Monitor with a D-fend™ flow and pressure sensor, and were analysed with a laptop using S5-Collect™ software. Clinical conditions were simulated using various ventilatory modes, using various ventilator settings, using different filters and endotracheal tubes, and by changing the resistance and compliance. Data were recorded for 258 combinations of patient factors and respirator settings to detect thresholds for the occurrence of the phenomenon and methods to overcome it. RESULTS: Under conditions with high resistance in pressure-regulated ventilation with the Oxylog 3000™, an oscillatory flow during inspiration produced rapid changes of the airway pressure. The phenomenon resulted in a jerky inspiration with high peak airway pressures, higher than those set on the ventilator. Reducing the inspiratory flow velocity was effective to terminate the phenomenon, but resulted in reduced tidal volumes. CONCLUSION: Oscillatory flow with potentially harmful effects may occur during ventilation with the Dräger Oxylog 3000™, especially in conditions with high resistance such as small airways in children (endotracheal tube internal diameter <6 mm) or severe obstructive lung diseases or airway diseases in adult patients

    The traveling wave MRI in cylindrical Taylor-Couette flow: comparing wavelengths and speeds in theory and experiment

    Full text link
    We study experimentally the flow of a liquid metal confined between differentially rotating cylinders, in the presence of externally imposed axial and azimuthal magnetic fields. For increasingly large azimuthal fields a wave-like disturbance arises, traveling along the axis of the cylinders. The wavelengths and speeds of these structures, as well as the field strengths and rotation rates at which they arise, are broadly consistent with theoretical predictions of such a traveling wave magnetorotational instability.Comment: 5 pages, 3 figures, accepted by Ap

    SeaWiFS calibration and validation plan, volume 3

    Get PDF
    The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) will be the first ocean-color satellite since the Nimbus-7 Coastal Zone Color Scanner (CZCS), which ceased operation in 1986. Unlike the CZCS, which was designed as a proof-of-concept experiment, SeaWiFS will provide routine global coverage every 2 days and is designed to provide estimates of photosynthetic concentrations of sufficient accuracy for use in quantitative studies of the ocean's primary productivity and biogeochemistry. A review of the CZCS mission is included that describes that data set's limitations and provides justification for a comprehensive SeaWiFS calibration and validation program. To accomplish the SeaWiFS scientific objectives, the sensor's calibration must be constantly monitored, and robust atmospheric corrections and bio-optical algorithms must be developed. The plan incorporates a multi-faceted approach to sensor calibration using a combination of vicarious (based on in situ observations) and onboard calibration techniques. Because of budget constraints and the limited availability of ship resources, the development of the operational algorithms (atmospheric and bio-optical) will rely heavily on collaborations with the Earth Observing System (EOS), the Moderate Resolution Imaging Spectrometer (MODIS) oceans team, and projects sponsored by other agencies, e.g., the U.S. Navy and the National Science Foundation (NSF). Other elements of the plan include the routine quality control of input ancillary data (e.g., surface wind, surface pressure, ozone concentration, etc.) used in the processing and verification of the level-0 (raw) data to level-1 (calibrated radiances), level-2 (derived products), and level-3 (gridded and averaged derived data) products

    C. elegans HAM-1 positions the cleavage plane and regulates apoptosis in asymmetric neuroblast divisions

    Get PDF
    AbstractAsymmetric cell division occurs when a mother cell divides to generate two distinct daughter cells, a process that promotes the generation of cellular diversity in metazoans. During Caenorhabditis elegans development, the asymmetric divisions of neural progenitors generate neurons, neural support cells and apoptotic cells. C. elegans HAM-1 is an asymmetrically distributed cortical protein that regulates several of these asymmetric neuroblast divisions. Here, we show that HAM-1 is a novel protein and define residues important for HAM-1 function and distribution to the cell cortex. Our phenotypic analysis of ham-1 mutant embryos suggests that HAM-1 controls only neuroblast divisions that produce apoptotic cells. Moreover, ham-1 mutant embryos contain many unusually large cell-death corpses. An investigation of this corpse phenotype revealed that it results from a reversal of neuroblast polarity. A misplacement of the neuroblast cleavage plane generates daughter cells of abnormal size, with the apoptotic daughters larger than normal. Thus, HAM-1 regulates the position of the cleavage plane, apoptosis and mitotic potential in C. elegans asymmetric cell divisions
    • …
    corecore