4,965 research outputs found
A magnetic cycle of tau Bootis? The coronal and chromospheric view
Tau Bootis is a late F-type main sequence star orbited by a Hot Jupiter.
During the last years spectropolarimetric observations led to the hypothesis
that this star may host a global magnetic field that switches its polarity once
per year, indicating a very short activity cycle of only one year duration. In
our ongoing observational campaign, we have collected several X-ray
observations with XMM-Newton and optical spectra with TRES/FLWO in Arizona to
characterize tau Boo's corona and chromosphere over the course of the supposed
one-year cycle. Contrary to the spectropolarimetric reconstructions, our
observations do not show indications for a short activity cycle.Comment: 4 pages, 2 figures, appeared in Astronomical Notes 333, 1, 26-29
(2012
MOST photometry of the enigmatic PMS pulsator HD 142666
We present precise photometry of the pulsating Herbig Ae star HD 142666
obtained in two consecutive years with the MOST (Microvariability & Oscilations
of STars) satellite.
Previously, only a single pulsation period was known for HD 142666. The MOST
photometry reveals that HD 142666 is multi-periodic. However, the unique
identification of pulsation frequencies is complicated by the presence of
irregular variability caused by the star's circumstellar dust disk. The two
light curves obtained with MOST in 2006 and 2007 provided data of unprecedented
quality to study the pulsations in HD 142666 and also to monitor the
circumstellar variability.
We attribute 12 frequencies to pulsation. Model fits to the three frequencies
with the highest amplitudes lie well outside the uncertainty box for the star's
position in the HR diagram based on published values.
The models suggest that either (1) the published estimate of the luminosity
of HD 142666, based on a relation between circumstellar disk radius and stellar
luminosity, is too high and/or (2) additional physics such as mass accretion
may be needed in our models to accurately fit both the observed frequencies and
HD 142666's position in the HR diagram.Comment: 10 pages, 11 figures, accepted for publication by Astronomy and
Astrophysic
Global transcript levels respond to small changes of the carbon status during progressive exhaustion of carbohydrates in Arabidopsis rosettes
The balance between the supply and utilization of carbon (C) changes continually. It has been proposed that plants respond in an acclimatory manner, modifying C utilization to minimize harmful periods of C depletion. This hypothesis predicts that signaling events are initiated by small changes in C status. We analyzed the global transcriptional response to a gradual depletion of C during the night and an extension of the night, where C becomes severely limiting from 4 h onward. The response was interpreted using published datasets for sugar, light, and circadian responses. Hundreds of C-responsive genes respond during the night and others very early in the extended night. Pathway analysis reveals that biosynthesis and cellular growth genes are repressed during the night and genes involved in catabolism are induced during the first hours of the extended night. The C response is amplified by an antagonistic interaction with the clock. Light signaling is attenuated during the 24-h light/dark cycle. A model was developed that uses the response of 22K genes during a circadian cycle and their responses to C and light to predict global transcriptional responses during diurnal cycles of wild-type and starchless pgm mutant plants and an extended night in wild-type plants. By identifying sets of genes that respond at different speeds and times during C depletion, our extended dataset and model aid the analysis of candidates for C signaling. This is illustrated for AKIN10 and four bZIP transcription factors, and sets of genes involved in trehalose signaling, protein turnover, and starch breakdown
Tandem Solar Cell Concept Using Black Silicon for Enhanced Infrared Absorption
AbstractIn this work we present a novel tandem solar cell concept that is based on enhanced below band gap infrared absorption. The solar cell structure is based on silicon and infrared activated Black Silicon. Infrared active Black Silicon is produced by exposing silicon to fs-laser pulses. It features an enhanced IR absorption, when processed under a sulfur-containing atmosphere. Then sulfur is incorporated into the silicon lattice during laser processing providing energy states in the band gap. This silicon based tandem cell thus absorbs light with wavelengths beyond 1.1μm. This can potentially increase the overall efficiency. In this paper we present the first experimental realization of this concept. We use a standard aluminium-back-surface-field (Al-BSF) silicon solar cell and implement a Black Silicon solar cell on its rear side for enhanced IR absorption. Current and voltage measurements show the feasibility of our concept
Plant physiological and environmental controls over the exchange of acetaldehyde between forest canopies and the atmosphere
We quantified fine scale sources and sinks of gas phase acetaldehyde in two forested ecosystems in the US. During the daytime, the upper canopy behaved as a net source while at lower heights, reduced emission rates or net uptake were observed. At night, uptake generally predominated throughout the canopies. Net ecosystem emission rates were inversely related to foliar density due to the extinction of light in the canopy and a respective decrease of the acetaldehyde compensation point. This is supported by branch level studies revealing much higher compensation points in the light than in the dark for poplar (<i>Populus deltoides</i>) and holly oak (<i>Quercus ilex</i>) implying a higher light/temperature sensitivity for acetaldehyde production relative to consumption. The view of stomata as the major pathway for acetaldehyde exchange is supported by strong linear correlations between branch transpiration rates and acetaldehyde exchange velocities for both species. In addition, natural abundance carbon isotope analysis of gas-phase acetaldehyde during poplar branch fumigation experiments revealed a significant kinetic isotope effect of 5.1&plusmn;0.3&permil; associated with the uptake of acetaldehyde. Similar experiments with dry dead poplar leaves showed no fractionation or uptake of acetaldehyde, confirming that this is only a property of living leaves. We suggest that acetaldehyde belongs to a potentially large list of plant metabolites where stomatal resistance can exert long term control over both emission and uptake rates due to the presence of both source(s) and sink(s) within the leaf which strongly buffer large changes in concentrations in the substomatal airspace due to changes in stomatal resistance. We conclude that the exchange of acetaldehyde between plant canopies and the atmosphere is fundamentally controlled by ambient acetaldehyde concentrations, stomatal resistance, and the compensation point which is a function of light/temperature
Recommended from our members
Fibre optic humidity sensor designed for highly alkaline environments
This paper presents the design of a sensor packaging for a Fibre Bragg Grating (FBG) based fibre optic humidity sensor. The evaluation of the developed fibre optic sensor was performed under experimental conditions and verified its capability to withstand highly alkaline environments. Therefore, the sensor can be applied to monitor the concrete humidity level and thus to indicate the maintenance of concrete structures
Tailoring the Absorption Properties of Black Silicon
AbstractSamples of crystalline silicon for use as solar cell material are structured and hyperdoped with sulfur by irradiation with femtosecond laser pulses under a sulfur hexafluoride atmosphere. The sulfur creates energy levels in the silicon band gap, allowing light absorption in the infrared wavelength regime, which offers the potential of a significant efficiency increase. This Black Silicon is a potential candidate for impurity or intermediate band photovoltaics. In this paper we determine the laser processed sulfur energy levels by deep-level transient spectroscopy (DLTS). We present how the number of laser pulses per sample spot influence the sulfur energy levels and hence the DLTS spectra. Further we show that changing the laser pulse by splitting it with a Michelson interferometer setup results in altered absorption which is most likely due to altered sulfur energy levels. This contribution focuses on the possibility of controlling the sulfur in Black Silicon through manipulating the laser pulse shape. As a first step samples of microstructured silicon are fabricated with doubled laser pulses at two different laser pulse distances and the absorption spectra by integrating sphere measurements are compared
- …