335 research outputs found

    Evidence for a Ru4+^{4+} Kondo Lattice in LaCu3_3Ru4_4O12_{12}

    Full text link
    Rare dd-electron derived heavy-fermion properties of the solid-solution series LaCu3_3Rux_xTi4x_{4-x}O12_{12} were studied for 1x41 \leq x \leq 4 by resistivity, susceptibility, specific-heat measurements, and magnetic-resonance techniques. The pure ruthenate (x=4x = 4) is a heavy-fermion metal characterized by a resistivity proportional to T2T^2 at low temperatures TT. The coherent Kondo lattice formed by the localized Ru 4dd electrons is screened by the conduction electrons leading to strongly enhanced effective electron masses. By increasing titanium substitution the Kondo lattice becomes diluted resulting in single-ion Kondo properties like in the paradigm 4f4f-based heavy-fermion compound Cex_xLa1x_{1-x}Cu2.05_{2.05}Si2_2 [M. Ocko {\em et al.}, Phys. Rev. B \textbf{64}, 195106 (2001)]. In LaCu3_3Rux_xTi4x_{4-x}O12_{12} the heavy-fermion behavior finally breaks down on crossing the metal-to-insulator transition close to x=2x = 2.Comment: 9 pages, 8 figure

    Microbial Risk Factors of Cardiovascular and Cerebrovascular Diseases: Potential Therapeutical Options

    Get PDF
    Infection and inflammation may have a crucial role in the pathogenesis of atherosclerosis. This hypothesis is supported by an increasing number of reports on the interaction between chronic infection, inflammation, and atherogenesis. Assessment of serological and inflammatory markers of infection may be useful adjuncts in identifying those patients who are at a higher risk of developing vascular events, and in whom more aggressive treatments might be warranted

    X-RED: A Satellite Mission Concept To Detect Early Universe Gamma Ray Bursts

    Get PDF
    Gamma ray bursts (GRBs) are the most energetic eruptions known in the Universe. Instruments such as Compton-GRO/BATSE and the GRB monitor on BeppoSAX have detected more than 2700 GRBs and, although observational confirmation is still required, it is now generally accepted that many of these bursts are associated with the collapse of rapidly spinning massive stars to form black holes. Consequently, since first generation stars are expected to be very massive, GRBs are likely to have occurred in significant numbers at early epochs. X-red is a space mission concept designed to detect these extremely high redshifted GRBs, in order to probe the nature of the first generation of stars and hence the time of reionisation of the early Universe. We demonstrate that the gamma and x-ray luminosities of typical GRBs render them detectable up to extremely high redshifts (z~10-30), but that current missions such as HETE2 and SWIFT operate outside the observational range for detection of high redshift GRB afterglows. Therefore, to redress this, we present a complete mission design from the science case to the mission architecture and payload, the latter comprising three instruments, namely wide field x-ray cameras to detect high redshift gamma-rays, an x-ray focussing telescope to determine accurate coordinates and extract spectra, and an infrared spectrograph to observe the high redshift optical afterglow. The mission is expected to detect and identify for the first time GRBs with z > 10, thereby providing constraints on properties of the first generation of stars and the history of the early Universe.Comment: 14 pages, 10 figures, spie.cls neede

    EPIC 219388192 b - an inhabitant of the brown dwarf desert in the Ruprecht 147 open cluster

    Get PDF
    We report the discovery of EPIC 219388192 b, a transiting brown dwarf in a 5.3-day orbit around a member star of Ruprecht-147, the oldest nearby open cluster association, which was photometrically monitored by K2 during its Campaign 7. We combine the K2 time-series data with ground-based adaptive optics imaging and high resolution spectroscopy to rule out false positive scenarios and determine the main parameters of the system. EPIC 219388192 b has a radius of RbR_\mathrm{b}=0.937±0.0420.937\pm0.042~RJup\mathrm{R_{Jup}} and mass of MbM_\mathrm{b}=36.50±0.0936.50\pm0.09~MJup\mathrm{M_{Jup}}, yielding a mean density of 59.0±8.159.0\pm8.1~gcm3\mathrm{g\,cm^{-3}}. The host star is nearly a Solar twin with mass MM_\star=0.99±0.050.99\pm0.05~M\mathrm{M_{\odot}}, radius RR_\star=1.01±0.041.01\pm0.04~R\mathrm{R_{\odot}}, effective temperature Teff\mathrm{T_{eff}}=5850±855850\pm85~K and iron abundance [Fe/H]=0.03±0.080.03\pm0.08~dex. Its age, spectroscopic distance, and reddening are consistent with those of Ruprecht-147, corroborating its cluster membership. EPIC 219388192 b is the first brown dwarf with precise determinations of mass, radius and age, and serves as benchmark for evolutionary models in the sub-stellar regime.Comment: 13 pages, 11 figures, 4 tables, submitted to AAS Journal

    K2-137 b: an Earth-sized planet in a 4.3-hour orbit around an M-dwarf

    Get PDF
    We report the discovery from K2 of a transiting terrestrial planet in an ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in only 4.3 hours, the second-shortest orbital period of any known planet, just 4 minutes longer than that of KOI 1843.03, which also orbits an M-dwarf. Using a combination of archival images, AO imaging, RV measurements, and light curve modelling, we show that no plausible eclipsing binary scenario can explain the K2 light curve, and thus confirm the planetary nature of the system. The planet, whose radius we determine to be 0.89 +/- 0.09 Earth radii, and which must have a iron mass fraction greater than 0.45, orbits a star of mass 0.463 +/- 0.052 Msol and radius 0.442 +/- 0.044 Rsol.Comment: 12 pages, 9 figures, accepted for publication in MNRA

    Three Small Planets Transiting a Hyades Star

    Get PDF
    We present the discovery of three small planets transiting K2-136 (LP 358 348, EPIC 247589423), a late K dwarf in the Hyades. The planets have orbital periods of 7.9757±0.00117.9757 \pm 0.0011, 17.306810.00036+0.0003417.30681^{+0.00034}_{-0.00036}, and 25.57150.0040+0.003825.5715^{+0.0038}_{-0.0040} days, and radii of 1.05±0.161.05 \pm 0.16, 3.14±0.363.14 \pm 0.36, and 1.550.21+0.241.55^{+0.24}_{-0.21} RR_\oplus, respectively. With an age of 600-800 Myr, these planets are some of the smallest and youngest transiting planets known. Due to the relatively bright (J=9.1) host star, the planets are compelling targets for future characterization via radial velocity mass measurements and transmission spectroscopy. As the first known star with multiple transiting planets in a cluster, the system should be helpful for testing theories of planet formation and migration.Comment: Accepted to The Astronomical Journa

    Exoplanets around Low-mass Stars Unveiled by K2

    Get PDF
    We present the detection and follow-up observations of planetary candidates around low-mass stars observed by the K2 mission. Based on light-curve analysis, adaptive-optics imaging, and optical spectroscopy at low and high resolution (including radial velocity measurements), we validate 16 planets around 12 low-mass stars observed during K2 campaigns 5-10. Among the 16 planets, 12 are newly validated, with orbital periods ranging from 0.96-33 days. For one of the planets (K2-151b) we present ground-based transit photometry, allowing us to refine the ephemerides. Combining our K2 M-dwarf planets together with the validated or confirmed planets found previously, we investigate the dependence of planet radius RpR_p on stellar insolation and metallicity [Fe/H]. We confirm that for periods P2P\lesssim 2 days, planets with a radius Rp2RR_p\gtrsim 2\,R_\oplus are less common than planets with a radius between 1-2R\,R_\oplus. We also see a hint of the "radius valley" between 1.5 and 2R\,R_\oplus that has been seen for close-in planets around FGK stars. These features in the radius/period distribution could be attributed to photoevaporation of planetary envelopes by high-energy photons from the host star, as they have for FGK stars. For the M dwarfs, though, the features are not as well defined, and we cannot rule out other explanations such as atmospheric loss from internal planetary heat sources, or truncation of the protoplanetary disk. There also appears to be a relation between planet size and metallicity: those few planets larger than about 3 RR_\oplus are found around the most metal-rich M dwarfs.Comment: 29 pages, 21 figures, 6 tables, Accepted in Astronomical Journa

    The transiting multi-planet system HD3167: a 5.7 MEarth Super-Earth and a 8.3 MEarth mini-Neptune

    Get PDF
    HD3167 is a bright (V=8.9 mag) K0V star observed by the NASA's K2 space mission during its Campaign 8. It has been recently found to host two small transiting planets, namely, HD3167b, an ultra short period (0.96 d) super-Earth, and HD3167c, a mini-Neptune on a relatively long-period orbit (29.85 d). Here we present an intensive radial velocity follow-up of HD3167 performed with the FIES@NOT, [email protected], and HARPS-N@TNG spectrographs. We revise the system parameters and determine radii, masses, and densities of the two transiting planets by combining the K2 photometry with our spectroscopic data. With a mass of 5.69+/-0.44 MEarth, radius of 1.574+/-0.054 REarth, and mean density of 8.00(+1.0)(-0.98) g/cm^3, HD3167b joins the small group of ultra-short period planets known to have a rocky terrestrial composition. HD3167c has a mass of 8.33 (+1.79)(-1.85) MEarth and a radius of 2.740(+0.106)(-0.100) REarth, yielding a mean density of 2.21(+0.56)(-0.53) g/cm^3, indicative of a planet with a composition comprising a solid core surrounded by a thick atmospheric envelope. The rather large pressure scale height (about 350 km) and the brightness of the host star make HD3167c an ideal target for atmospheric characterization via transmission spectroscopy across a broad range of wavelengths. We found evidence of additional signals in the radial velocity measurements but the currently available data set does not allow us to draw any firm conclusion on the origin of the observed variation.Comment: 18 pages, 11 figures, 5 table

    Impact of an in-hospital endocarditis team and a state-wide endocarditis network on perioperative outcomes

    Get PDF
    Background: Infective endocarditis (IE) requires multidisciplinary management. We established an endocarditis team within our hospital in 2011 and a state-wide endocarditis network with referring hospitals in 2015. We aimed to investigate their impact on perioperative outcomes. Methods: We retrospectively analyzed data from patients operated on for IE in our center between 01/2007 and 03/2018. To investigate the impact of the endocarditis network on referral latency and pre-operative complications we divided patients into two eras: before ( n = 409) and after ( n = 221) 01/2015. To investigate the impact of the endocarditis team on post-operative outcomes we conducted multivariate binary logistic regression analyses for the whole population. Kaplan–Meier estimates of 5-year survival were reported. Results: In the second era, after establishing the endocarditis network, the median time from symptoms to referral was halved (7 days (interquartile range: 2–19) vs. 15 days (interquartile range: 6–35)), and pre-operative endocarditis-related complications were reduced, i.e., stroke (14% vs. 27%, p < 0.001), heart failure (45% vs. 69%, p < 0.001), cardiac abscesses (24% vs. 34%, p = 0.018), and acute requirement of hemodialysis (8% vs. 14%, p = 0.026). In both eras, a lack of recommendations from the endocarditis team was an independent predictor for in-hospital mortality (adjusted odds ratio: 2.12, 95% CI: 1.27–3.53, p = 0.004) and post-operative stroke (adjusted odds ratio: 2.23, 95% CI: 1.12–4.39, p = 0.02), and was associated with worse 5-year survival (59% vs. 40%, log-rank < 0.001). Conclusion: The establishment of an endocarditis network led to the earlier referral of patients with fewer pre-operative endocarditis-related complications. Adhering to endocarditis team recommendations was an independent predictor for lower post-operative stroke and in-hospital mortality, and was associated with better 5-year survival
    corecore