46 research outputs found
Lipid transport and human brain development
How the human brain rapidly builds up its lipid content during brain growth and maintains its lipids in adulthood has remained elusive. Two new studies show that inactivating mutations in MFSD2A, known to be expressed specifically at the blood-brain barrier, lead to microcephaly, thereby offering a simple and surprising solution to an old enigma.</p
An AKT3-FOXG1-Reelin network underlies defective migration in human focal malformations of cortical development
Focal malformations of cortical development (FMCDs) account for the majority of drug-resistant pediatric epilepsy. Postzygotic somatic mutations activating the phosphatidylinositol-4,5-bisphosphate-3-kinase (PI3K)-protein kinase B (AKT)-mammalian target of rapamycin (mTOR) pathway are found in a wide range of brain diseases, including FMCDs. It remains unclear how a mutation in a small fraction of cells disrupts the architecture of the entire hemisphere. Within human FMCD-affected brain, we found that cells showing activation of the PI3K-AKT-mTOR pathway were enriched for the AKT3(E17K) mutation. Introducing the FMCD-causing mutation into mouse brain resulted in electrographic seizures and impaired hemispheric architecture. Mutation-expressing neural progenitors showed misexpression of reelin, which led to a non-cell autonomous migration defect in neighboring cells, due at least in part to derepression of reelin transcription in a manner dependent on the forkhead box (FOX) transcription factor FOXG1. Treatments aimed at either blocking downstream AKT signaling or inactivating reelin restored migration. These findings suggest a central AKT-FOXG1-reelin signaling pathway in FMCD and support pathway inhibitors as potential treatments or therapies for some forms of focal epilepsy.1134sciescopu
An AKT3-FOXG1-reelin network underlies defective migration in human focal malformations of cortical development.
1342
Homozygous mutations in TBC1D23 lead to a non-degenerative form of pontocerebellar hypoplasia
Pontocerebellar hypoplasia (PCH) represents a group of recessive developmental disorders characterized by impaired growth of the pons and cerebellum, which frequently follows a degenerative course. Currently, there are 10 partially overlapping clinical subtypes and 13 genes known mutated in PCH. Here, we report biallelic TBC1D23 mutations in six individuals from four unrelated families manifesting a non-degenerative form of PCH. In addition to reduced volume of pons and cerebellum, affected individuals had microcephaly, psychomotor delay, and ataxia. In zebrafish, tbc1d23 morphants replicated the human phenotype showing hindbrain volume loss. TBC1D23 localized at the trans-Golgi and was regulated by the small GTPases Arl1 and Arl8, suggesting a role in trans-Golgi membrane trafficking. Altogether, this study provides a causative link between TBC1D23 mutations and PCH and suggests a less severe clinical course than other PCH subtypes
Homozygous Mutations in TBC1D23 Lead to a Non-degenerative Form of Pontocerebellar Hypoplasia.
Pontocerebellar hypoplasia (PCH) represents a group of recessive developmental disorders characterized by impaired growth of the pons and cerebellum, which frequently follows a degenerative course. Currently, there are 10 partially overlapping clinical subtypes and 13 genes known mutated in PCH. Here, we report biallelic TBC1D23 mutations in six individuals from four unrelated families manifesting a non-degenerative form of PCH. In addition to reduced volume of pons and cerebellum, affected individuals had microcephaly, psychomotor delay, and ataxia. In zebrafish, tbc1d23 morphants replicated the human phenotype showing hindbrain volume loss. TBC1D23 localized at the trans-Golgi and was regulated by the small GTPases Arl1 and Arl8, suggesting a role in trans-Golgi membrane trafficking. Altogether, this study provides a causative link between TBC1D23 mutations and PCH and suggests a less severe clinical course than other PCH subtypes
Recommended from our members
Zika Virus Protease Cleavage of Host Protein Septin-2 Mediates Mitotic Defects in Neural Progenitors
Zika virus (ZIKV) targets neural progenitor cells in the brain, attenuates cell proliferation, and leads to cell death. Here, we describe a role for the ZIKV protease NS2B-NS3 heterodimer in mediating neurotoxicity through cleavage of a host protein required for neurogenesis. Similar to ZIKV infection, NS2B-NS3 expression led to cytokinesis defects and cell death in a protease activity-dependent fashion. Among binding partners, NS2B-NS3 cleaved Septin-2, a cytoskeletal factor involved in cytokinesis. Cleavage of Septin-2 occurred at residue 306 and forced expression of a non-cleavable Septin-2 restored cytokinesis, suggesting a direct mechanism of ZIKV-induced neural toxicity. VIDEO ABSTRACT
Homozygous Mutations in TBC1D23 Lead to a Non-degenerative Form of Pontocerebellar Hypoplasia
Pontocerebellar hypoplasia (PCH) represents a group of recessive
developmental disorders characterized by impaired growth of the pons and
cerebellum, which frequently follows a degenerative course. Currently,
there are 10 partially overlapping clinical subtypes and 13 genes known
mutated in PCH. Here, we report biallelic TBC1D23 mutations in six
individuals from four unrelated families manifesting a non-degenerative
form of PCH. In addition to reduced volume of pons and cerebellum,
affected individuals had microcephaly, psychomotor delay, and ataxia. In
zebrafish, tbc1d23 morphants replicated the human phenotype showing
hindbrain volume loss. TBC1D23 localized at the trans-Golgi and was
regulated by the small GTPases Arl1 and Arl8, suggesting a role in
trans-Golgi membrane trafficking. Altogether, this study provides a
causative link between TBC1D23 mutations and PCH and suggests a less
severe clinical course than other PCH subtypes
Pathogenic <i>MAST3</i> Variants in the STK Domain Are Associated with Epilepsy
OBJECTIVE: The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum. METHODS: Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy. We also assess the effect of these variants on the ability of MAST3 to phosphorylate the target gene product ARPP-16 in HEK293T cells. RESULTS: We identify de novo missense variants in the STK domain in 11 individuals, including 2 recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. In vitro analysis of HEK293T cells transfected with MAST3 cDNA carrying a subset of these patient-specific missense variants demonstrated variable but generally lower expression, with concomitant increased phosphorylation of the MAST3 target, ARPP-16, compared to wild-type. These findings suggest the patient-specific variants may confer MAST3 gain-of-function. Moreover, single-nuclei RNA sequencing and immunohistochemistry shows that MAST3 expression is restricted to excitatory neurons in the cortex late in prenatal development and postnatally. INTERPRETATION: In summary, we describe MAST3 as a novel epilepsy-associated gene with a potential gain-of-function pathogenic mechanism that may be primarily restricted to excitatory neurons in the cortex. ANN NEUROL 2021;90:274-284
