205 research outputs found

    Branding the nation: Towards a better understanding

    Get PDF
    This paper aims to clarify some misunderstanding about nation branding. It examines the origins and interpretations of the concept, and draws a comparison between nation branding and commercial branding. A new definition is offered that emphasises the need to shift from “branding” the nation to nation image management

    Interferon and Biologic Signatures in Dermatomyositis Skin: Specificity and Heterogeneity across Diseases

    Get PDF
    BACKGROUND: Dermatomyositis (DM) is an autoimmune disease that mainly affects the skin, muscle, and lung. The pathogenesis of skin inflammation in DM is not well understood. METHODOLOGY AND FINDINGS: We analyzed genome-wide expression data in DM skin and compared them to those from healthy controls. We observed a robust upregulation of interferon (IFN)-inducible genes in DM skin, as well as several other gene modules pertaining to inflammation, complement activation, and epidermal activation and differentiation. The interferon (IFN)-inducible genes within the DM signature were present not only in DM and lupus, but also cutaneous herpes simplex-2 infection and to a lesser degree, psoriasis. This IFN signature was absent or weakly present in atopic dermatitis, allergic contact dermatitis, acne vulgaris, systemic sclerosis, and localized scleroderma/morphea. We observed that the IFN signature in DM skin appears to be more closely related to type I than type II IFN based on in vitro IFN stimulation expression signatures. However, quantitation of IFN mRNAs in DM skin shows that the majority of known type I IFNs, as well as IFN g, are overexpressed in DM skin. In addition, both IFN-beta and IFN-gamma (but not other type I IFN) transcript levels were highly correlated with the degree of the in vivo IFN transcriptional response in DM skin. CONCLUSIONS AND SIGNIFICANCE: As in the blood and muscle, DM skin is characterized by an overwhelming presence of an IFN signature, although it is difficult to conclusively define this response as type I or type II. Understanding the significance of the IFN signature in this wide array of inflammatory diseases will be furthered by identification of the nature of the cells that both produce and respond to IFN, as well as which IFN subtype is biologically active in each diseased tissue

    S100A7 (Psoriasin), highly expressed in Ductal Carcinoma In Situ (DCIS), is regulated by IFN-gamma in mammary epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the present work was to explore signal transduction pathways used in the regulation of S100A7 (psoriasin). Members of the S100 gene family participate in many important cellular functions. Psoriasin, S100A8 (calgranulin A) and S100A9 (calgranulin B) are expressed in ductal carcinoma <it>in situ </it>(DCIS), as well as in the hyperproliferative skin disease, psoriasis. In the latter condition, a disturbance in the STAT pathway has recently been reported. This pathway is implicated in the regulation of IFN-gamma, widely recognized as a key cytokine in psoriasis. IFN-gamma also exerts anti-tumor action in a number of tumor cell types, including breast cancer. We therefore examined the effect of IFN-gamma and STAT-signaling on the psoriasin expression.</p> <p>Methods</p> <p>We established a TAC2 mouse mammary epithelial cell line with tetracycline-inducible psoriasin expression (Tet-Off). Viability in cell culture was estimated using MTS assay. Protein and gene expression were evaluated by Western blotting and quantitative real-time PCR. Statistical analyses were assessed using a one-tailed, paired t-test.</p> <p>Results</p> <p>We report the downregulation of psoriasin by IFN-gamma in the MDA-MB-468 breast cancer cell line, as well as the downregulation of psoriasin induced by anoikis in cell lines derived from different epithelial tissues. In contrast, IFN-gamma had no suppressive effect on calgranulin A or calgranulin B. IFN-gamma is an important activator of the STAT1 pathway and we confirmed an active signaling pathway in the cell lines that responded to IFN-gamma treatment. In contrast, in the SUM190 breast carcinoma cell line, IFN-gamma did not suppress the expression of endogenous psoriasin. Moreover, a reduced phosphorylation of the STAT1 protein was observed. We showed that IFN-gamma treatment and the inhibition of the transcription factor NFkappaB had a synergistic effect on psoriasin levels. Finally, in TAC2 cells with tetracycline-induced psoriasin expression, we observed the increased viability of psoriasin-expressing cells after IFN-gamma treatment.</p> <p>Conclusion</p> <p>Our data support the possibility that psoriasin expression is transcriptionally suppressed by IFN-gamma and that this effect is likely to be mediated by the activation of the STAT1 signaling pathway. The increased viability of psoriasin-expressing cells after IFN-gamma exposure suggests that psoriasin expression leads to the development of an apoptosis-resistant phenotype.</p

    HER2 induced EMT and tumorigenicity in breast epithelial progenitor cells is inhibited by coexpression of EGFR.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.The members of the epidermal growth factor receptor (EGFR) kinase family are important players in breast morphogenesis and cancer. EGFR2/HER2 and EGFR expression have a prognostic value in certain subtypes of breast cancer such as HER2-amplified, basal-like and luminal type B. Many clinically approved small molecular inhibitors and monoclonal antibodies have been designed to target HER2, EGFR or both. There is, however, still limited knowledge on how the two receptors are expressed in normal breast epithelium, what effects they have on cellular differentiation and how they participate in neoplastic transformation. D492 is a breast epithelial cell line with stem cell properties that can undergo epithelial to mesenchyme transition (EMT), generate luminal- and myoepithelial cells and form complex branching structures in three-dimensional (3D) culture. Here, we show that overexpression of HER2 in D492 (D492(HER2)) resulted in EMT, loss of contact growth inhibition and increased oncogenic potential in vivo. HER2 overexpression, furthermore, inhibited endogenous EGFR expression. Re-introducing EGFR in D492(HER2) (D492(HER2/EGFR)) partially reversed the mesenchymal state of the cells, as an epithelial phenotype reappeared both in 3D cultures and in vivo. The D492(HER2/EGFR) xenografts grow slower than the D492(HER2) tumors, while overexpression of EGFR alone (D492(EGFR)) was not oncogenic in vivo. Consistent with the EGFR-mediated epithelial phenotype, overexpression of EGFR drove the cells toward a myoepithelial phenotype in 3D culture. The effect of two clinically approved anti-HER2 and EGFR therapies, trastuzumab and cetuximab, was tested alone and in combination on D492(HER2) xenografts. While trastuzumab had a growth inhibitory effect compared with untreated control, the effect of cetuximab was limited. When administered in combination, the growth inhibitory effect of trastuzumab was less pronounced. Collectively, our data indicate that in HER2-overexpressing D492 cells, EGFR can behave as a tumor suppressor, by pushing the cells towards epithelial differentiation.Landspitali University Hospital Science Fund, University of Iceland Research Fund, Science and Technology Policy Council Research Fund and Grant of Excellence, ‘Göngum saman’, a supporting group for breast cancer research in Iceland

    Self-Association of an Activating Natural Killer Cell Receptor, KIR2DS1

    Get PDF
    As a major component of the innate immune system, natural killer cells are responsible for activating the cytolytic killing of certain pathogen-infected or tumor cells. The self-recognition of natural killer cells is achieved in part by the killer cell immunoglobulin-like receptors (KIRs) protein family. In the current study, using a suite of biophysical methods, we investigate the self-association of an activating KIR, KIR2DS1. This KIR is of particular interest because when in the presence of the HLA-Cw6 protein, KIR2DS1 becomes a major risk factor for psoriasis, an autoimmune chronic skin disease. Using circular dichroism spectroscopy, dynamic light scattering, and atomic force microscopy, we reveal that KIR2DS1 self-associates in a well-defined fashion. Our novel results on an activating KIR allow us to suggest a working model for the KIR2DS1- HLA class I molecular mechanism

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    Proton and carbon ion radiotherapy for primary brain tumors delivered with active raster scanning at the Heidelberg Ion Therapy Center (HIT): early treatment results and study concepts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Particle irradiation was established at the University of Heidelberg 2 years ago. To date, more than 400 patients have been treated including patients with primary brain tumors. In malignant glioma (WHO IV) patients, two clinical trials have been set up-one investigating the benefit of a carbon ion (18 GyE) vs. a proton boost (10 GyE) in addition to photon radiotherapy (50 Gy), the other one investigating reirradiation with escalating total dose schedules starting at 30 GyE. In atypical meningioma patients (WHO °II), a carbon ion boost of 18 GyE is applied to macroscopic tumor residues following previous photon irradiation with 50 Gy.</p> <p>This study was set up in order to investigate toxicity and response after proton and carbon ion therapy for gliomas and meningiomas.</p> <p>Methods</p> <p>33 patients with gliomas (n = 26) and meningiomas (n = 7) were treated with carbon ion (n = 26) and proton (n = 7) radiotherapy. In 22 patients, particle irradiation was combined with photon therapy. Temozolomide-based chemotherapy was combined with particle therapy in 17 patients with gliomas. Particle therapy as reirradiation was conducted in 7 patients. Target volume definition was based upon CT, MRI and PET imaging. Response was assessed by MRI examinations, and progression was diagnosed according to the Macdonald criteria. Toxicity was classified according to CTCAE v4.0.</p> <p>Results</p> <p>Treatment was completed and tolerated well in all patients. Toxicity was moderate and included fatigue (24.2%), intermittent cranial nerve symptoms (6%) and single episodes of seizures (6%). At first and second follow-up examinations, mean maximum tumor diameters had slightly decreased from 29.7 mm to 27.1 mm and 24.9 mm respectively. Nine glioma patients suffered from tumor relapse, among these 5 with infield relapses, causing death in 8 patients. There was no progression in any meningioma patient.</p> <p>Conclusions</p> <p>Particle radiotherapy is safe and feasible in patients with primary brain tumors. It is associated with little toxicity. A positive response of both gliomas and meningiomas, which is suggested in these preliminary data, must be evaluated in further clinical trials.</p

    Replication of Association between ADAM33 Polymorphisms and Psoriasis

    Get PDF
    Polymorphisms in ADAM33, the first gene identified in asthma by positional cloning, have been recently associated with psoriasis. No replication study of this association has been published so far. Data available in the French EGEA study (Epidemiological study on Genetics and Environment of Asthma, bronchial hyperresponsivensess and Atopy) give the opportunity to attempt to replicate the association between ADAM33 and psoriasis in 2002 individuals. Psoriasis (n = 150) has been assessed by questionnaire administered by an interviewer and a sub-sample of subjects with early-onset psoriasis (n = 74) has been identified based on the age of the subjects at time of interview (<40 years). Nine SNPs in ADAM33 and 11 SNPs in PSORS1 were genotyped. Association analysis was conducted by using two methods, GEE regression-based method and a likelihood-based method (LAMP program). The rs512625 SNP in ADAM33 was found associated with psoriasis at p = 0.01, the usual threshold required for replication (OR [95% CI] for heterozygotes compared to the reference group of homozygotes for the most frequent allele = 0.61 [0.42;0.89]). The rs628977 SNP, which was not in linkage disequilibrium with rs512625, was significantly associated with early-onset psoriasis (p = 0.01, OR [95% CI] for homozygotes for the minor allele compared to the reference group = 2.52 [1.31;4.86]). Adjustment for age, sex, asthma and a PSORS1 SNP associated with psoriasis in the EGEA data did not change the significance of these associations. This suggests independent effects of ADAM33 and PSORS1 on psoriasis. This is the first study that replicates an association between genetic variants in ADAM33 and psoriasis. Interestingly, the 2 ADAM33 SNPs associated with psoriasis in the present analysis were part of the 3-SNPs haplotypes showing the strongest associations in the initial study. The identification of a pleiotropic effect of ADAM33 on asthma and psoriasis may contribute to the understanding of these common immune-mediated diseases
    corecore