610 research outputs found

    Entanglement sudden death and sudden birth in two uncoupled spins

    Full text link
    We investigate the entanglement evolution of two qubits interacting with a common environment trough an Heisenberg XX mechanism. We reveal the possibility of realizing the phenomenon of entanglement sudden death as well as the entanglement sudden birth acting on the environment. Such analysis is of maximal interest at the light of the large applications that spin systems have in quantum information theory

    Demonstration of Einstein-Podolsky-Rosen Steering Using Hybrid Continuous- and Discrete-Variable Entanglement of Light

    Full text link
    Einstein-Podolsky-Rosen steering is known to be a key resource for one-sided device-independent quantum information protocols. Here we demonstrate steering using hybrid entanglement between continuous- and discrete-variable optical qubits. To this end, we report on suitable steering inequalities and detail the implementation and requirements for this demonstration. Steering is experimentally certified by observing a violation by more than 5 standard deviations. Our results illustrate the potential of optical hybrid entanglement for applications in heterogeneous quantum networks that would interconnect disparate physical platforms and encodings

    Metabolic Changes Associated with Different Levels of Energy Deficits in Mediterranean Buffaloes during the Early Lactation Stage: Type and Role of the Main Lipid Fractions Involved

    Get PDF
    Simple Summary The mobilization of lipids from adipose tissue increases fatty acids and ketone bodies levels. The & beta;-hydroxybutyrate is the main ketone body used to diagnose ketosis, a metabolic disorder of the transition period, in ruminants. Nevertheless, a specific cut-off for the ketosis of & beta;-hydroxybutyrate in buffaloes and the plasma lipid fractions related to ketone bodies have not been established. The relative concentrations of not only total plasma lipids but also lipid fractions such as phospholipids, free fatty acids, triglycerides, and cholesterol esters are influenced by the mobilization of lipids. Each of these fractions has a different role in animal metabolism, influencing energy redistribution and cell metabolism and function. The present study reveals the relationship between lipid fractions and changes in metabolism and inflammation that is related to variations in lipid classes according to different levels of energy deficits in the early lactation of Mediterranean buffaloes. Furthermore, buffaloes defined as at risk of ketosis showed similarities, with ketotic cows suggesting the necessity of further investigations in these ruminants. Cell function and energy redistribution are influenced by lipid classes (phospholipids (PLs), free fatty acids (FFAs), triglycerides (TGs), and cholesterol esters (CEs)). The aim of this study was to investigate metabolic alterations that are related to changes in lipid classes according to different levels of energy deficits in early lactating Mediterranean buffaloes (MBs). Sixty-three MBs were enrolled at the beginning of lactation using an observational study with a cross-sectional experimental design. Serum & beta;-hydroxybutyrate (BHB) levels were used to group the animals into a healthy group (Group H; n = 38; BHB < 0.70 mmol/L) and hyperketonemia risk group (Group K; n = 25; BHB & GE; 0.70 mmol/L). Statistical analysis was performed using a linear model that included the effect of the group and body condition score to assess differences in fatty acid (FA) concentrations. A total of 40 plasma FAs were assessed in each lipid class. Among the FAs, eight PLs, seven FFAs, four TGs, and four CEs increased according to BHB levels, while three FFAs, three TGs, and one CE decreased. The changes among lipid class profiles suggested the influence of inflammatory response, liver metabolism, and the state of body lipid reserves. In addition, the possible similarities of buffaloes at risk of hyperketonemia with ketotic cows suggest the necessity of further investigations in these ruminants

    Application of Opuntia ficus-indica Mucilage and Aloe Gel-Based Edible Coating to Enhance Postharvest Quality and Microbiological Aspects of Fresh Figs (Ficus carica L.)

    Get PDF
    Fig is a widespread crop in southern Italy, highly valued for its sweet flavor. However, its consumption as a fresh product is limited to three to four days after harvest because of its high susceptibility to quality loss and microbial contamination. The combined use of low temperature and a modified atmosphere is the traditional preservation method. However, several studies have shown that the use of Aloe arborescens or vera and O. ficus-indica (OFI) mucilage as an edible coating could reduce the microbial load and water loss, respectively. Therefore, our study aimed to evaluate the synergistic effects of Aloe gel (AG) and O. ficus-indica mucilage (OM) on the quality and safety of two fig cultivars, 'San Giovanni' and 'Melanzana', during cold storage at 4 degrees C. The main results showed the effectiveness of edible coatings on both fig cultivars. An AG coating significantly reduced the microbial load, while the OM treatment showed the ability to preserve firmness and reduce weight loss. In addition, the combined OM + AG treatment showed the same effects as the individual coating formulations, also improving visual appearance. Thus, the use of the synergetic coating formulation could be a natural way to reduce the microbial load, extending fresh fig fruit's shelf life

    Serum metabolomics assessment of etiological processes predisposing ketosis in water buffalo during early lactation

    Get PDF
    Metabolic disorders as ketosis are manifestations of the animal's inability to manage the increase in energy requirement during early lactation. Generally, buffaloes show a different response to higher metabolic demands than other ruminants with a lower incidence of metabolic problems, although ketosis is one of the major diseases that may decrease the productivity in buffaloes. The aim of this study was to characterize the metabolic profile of Mediterranean buffaloes (MB) associated with 2 different levels of beta-hydroxybutyrate (BHB). Sixty-two MB within 50 days in milk (DIM) were enrolled and divided into 2 groups according to se -rum BHB concentration: healthy group (37 MB; BHB &lt;0.70 mmol/L; body condition score: 5.00; parity: 3.78; and DIM: 30.70) and group at risk of hyperketonemia (25 MB; BHB &gt;= 0.70 mmol/L; body condition score: 4.50; parity: 3.76; and DIM: 33.20). The statistical analysis was conducted by one-way ANOVA and un-paired 2-sample Wilcoxon tests. Fifty-seven metabolites were identified and among them, 12 were significant or tended to be significant. These metabolites were related to different metabolic changes such as mobilization of body resources, ruminal fermentations, urea cycle, thy-roid hormone synthesis, inflammation, and oxidative stress status. These findings are suggestive of metabolic changes related to subclinical ketosis status that should be further investigated to better characterize this dis-ease in the MB

    In silico screening for human norovirus antivirals reveals a novel non-nucleoside inhibitor of the viral polymerase

    Get PDF
    Human norovirus causes approximately 219,000 deaths annually, yet there are currently no antivirals available. A virtual screening of commercially available drug-like compounds (~300,000) was performed on the suramin and PPNDS binding-sites of the norovirus RNA-dependent RNA polymerase (RdRp). Selected compounds (n = 62) were examined for inhibition of norovirus RdRp activity using an in vitro transcription assay. Eight candidates demonstrated RdRp inhibition (>25% inhibition at 10 ÎĽM), which was confirmed using a gel-shift RdRp assay for two of them. The two molecules were identified as initial hits and selected for structure-activity relationship studies, which resulted in the synthesis of novel compounds that were examined for inhibitory activity. Five compounds inhibited human norovirus RdRp activity (>50% at 10 ÎĽM), with the best candidate, 54, demonstrating an IC50 of 5.6 ÎĽM against the RdRp and a CC50 of 62.8 ÎĽM. Combinational treatment of 54 and the known RdRp site-B inhibitor PPNDS revealed antagonism, indicating that 54 binds in the same binding pocket. Two RdRps with mutations (Q414A and R419A) previously shown to be critical for the binding of site-B compounds had no effect on inhibition, suggesting 54 interacts with distinct site-B residues. This study revealed the novel scaffold 54 for further development as a norovirus antiviral

    Using machine learning to characterize heart failure across the scales

    Get PDF
    Heart failure is a progressive chronic condition in which the heart undergoes detrimental changes in structure and function across multiple scales in time and space. Multiscale models of cardiac growth can provide a patient-specific window into the progression of heart failure and guide personalized treatment planning. Yet, the predictive potential of cardiac growth models remains poorly understood. Here, we quantify predictive power of a stretch-driven growth model using a chronic porcine heart failure model, subject-specific multiscale simulation, and machine learning techniques. We combine hierarchical modeling, Bayesian inference, and Gaussian process regression to quantify the uncertainty of our experimental measurements during an 8-week long study of volume overload in six pigs. We then propagate the experimental uncertainties from the organ scale through our computational growth model and quantify the agreement between experimentally measured and computationally predicted alterations on the cellular scale. Our study suggests that stretch is the major stimulus for myocyte lengthening and demonstrates that a stretch-driven growth model alone can explain 52.7% of the observed changes in myocyte morphology. We anticipate that our approach will allow us to design, calibrate, and validate a new generation of multiscale cardiac growth models to explore the interplay of various subcellular-, cellular-, and organ-level contributors to heart failure. Using machine learning in heart failure research has the potential to combine information from different sources, subjects, and scales to provide a more holistic picture of the failing heart and point toward new treatment strategies

    Virilizing Leydig-Sertoli cell ovarian tumor associated with endometrioid carcinoma of the endometrium in a postmenopausal patient: Case report and general considerations

    Get PDF
    Sertoli-Leydig cell tumors (SLCTs) are rare tumors mostly occurring in young women. Here we report an unusual case of a SLCT with simultaneous occurrence of endometrioid adenocarcinoma of the endometrium in a woman in menopause

    Quantitative Proteomics of Intracellular Campylobacter jejuni Reveals Metabolic Reprogramming

    Get PDF
    Campylobacter jejuni is the major cause of bacterial food-borne illness in the USA and Europe. An important virulence attribute of this bacterial pathogen is its ability to enter and survive within host cells. Here we show through a quantitative proteomic analysis that upon entry into host cells, C. jejuni undergoes a significant metabolic downshift. Furthermore, our results indicate that intracellular C. jejuni reprograms its respiration, favoring the respiration of fumarate. These results explain the poor ability of C. jejuni obtained from infected cells to grow under standard laboratory conditions and provide the bases for the development of novel anti microbial strategies that would target relevant metabolic pathways
    • …
    corecore