523 research outputs found

    Quantum regression theorem and non-Markovianity of quantum dynamics

    Full text link
    We explore the connection between two recently introduced notions of non-Markovian quantum dynamics and the validity of the so-called quantum regression theorem. While non-Markovianity of a quantum dynamics has been defined looking at the behaviour in time of the statistical operator, which determines the evolution of mean values, the quantum regression theorem makes statements about the behaviour of system correlation functions of order two and higher. The comparison relies on an estimate of the validity of the quantum regression hypothesis, which can be obtained exactly evaluating two points correlation functions. To this aim we consider a qubit undergoing dephasing due to interaction with a bosonic bath, comparing the exact evaluation of the non-Markovianity measures with the violation of the quantum regression theorem for a class of spectral densities. We further study a photonic dephasing model, recently exploited for the experimental measurement of non-Markovianity. It appears that while a non-Markovian dynamics according to either definition brings with itself violation of the regression hypothesis, even Markovian dynamics can lead to a failure of the regression relation.Comment: 11 pages, 4 figure

    Semi-automated detection of surface degradation on bridges based on a level set method

    Get PDF
    Due to the effect of climate factors, natural phenomena and human usage, buildings and infrastructures are subject of progressive degradation. The deterioration of these structures has to be monitored in order to avoid hazards for human beings and for the natural environment in their neighborhood. Hence, on the one hand, monitoring such infrastructures is of primarily importance. On the other hand, unfortunately, nowadays this monitoring effort is mostly done by expert and skilled personnel, which follow the overall data acquisition, analysis and result reporting process, making the whole monitoring procedure quite expensive for the public (and private, as well) agencies. This paper proposes the use of a partially user-assisted procedure in order to reduce the monitoring cost and to make the obtained result less subjective as well. The developed method relies on the use of images acquired with standard cameras by even inexperienced personnel. The deterioration on the infrastructure surface is detected by image segmentation based on a level sets method. The results of the semi-automated analysis procedure are remapped on a 3D model of the infrastructure obtained by means of a terrestrial laser scanning acquisition. The proposed method has been successfully tested on a portion of a road bridge in Perarolo di Cadore (BL), Italy

    Developing vanadium redox flow technology on a 9-kW 26-kWh industrial scale test facility: Design review and early experiments

    Get PDF
    Redox Flow Batteries (RFBs) have a strong potential for future stationary storage, in view of the rapid expansion of renewable energy sources and smart grids. Their development and future success largely depend on the research on new materials, namely electrolytic solutions, membranes and electrodes, which is typically conduced on small single cells. A vast literature on these topics already exists. However, also the technological development plays a fundamental role in view of the successful application of RFBs in large plants. Despite that, very little research is reported in literature on the technology of large RFB systems. This paper presents the design, construction and early operation of a vanadium redox flow battery test facility of industrial size, dubbed IS-VRFB, where such technologies are developed and tested. In early experiments a peak power of 8.9 kW has been achieved with a stack specific power of 77Wkg−1. The maximum tested current density of 635 mA cm−2 has been reached with a cell voltage of 0.5 V, indicating that higher values can be obtained. The test facility is ready to be complemented with advanced diagnostic devices, including multichannel electrochemical impedance spectroscopy for studying aging and discrepancies in the cell behaviors

    Thermal modeling of industrial-scale vanadium redox flow batteries in high-current operations

    Get PDF
    A cell-resolved model that simulates the dynamic thermal behavior of a Vanadium Redox Flow Battery during charge and discharge is presented. It takes into account, at a cell level, the reversible entropic heat of the electrochemical reactions, irreversible heat due to overpotentials, self-discharge reactions due to ion crossover, and shunt current losses. The model accounts for the heat transfer between cells and toward the environment, the pump hydraulic losses and the heat transfer of piping and tanks. It provides the electrolyte temperature in each cell, at the stack inlet and outlet, along the piping and in the tanks. Validation has been carried out against the charge/discharge measurements from a 9kW/27kWh VRFB test facility. The model has been applied to study a VRFB with the same stack but a much larger capacity, operating at \uf0b1400 A for 8 h, in order to identify critical thermal conditions which may occur in next-generation industrial VRFB stacks capable to operating at high current density. The most critical condition has been found at the end a long discharge, when temperatures above 50\ub0C appeared, possibly resulting in \u3016VO\u3017_2^+ precipitation and battery faults. These results call for heat exchangers tailored to assist high-power VRFB systems

    A geodatabase for multisource data applied to cultural heritage: The case study of Villa Revedin Bolasco

    Get PDF
    In this paper we present the results of the development of a Web-based archiving and documenting system aimed to the management of multisource and multitemporal data related to cultural heritage. As case study we selected the building complex of Villa Revedin Bolasco in Castefranco Veneto (Treviso, Italy) and its park. Buildings and park were built in XIX century after several restorations of the original XIV century area. The data management system relies on a geodatabase framework, in which different kinds of datasets were stored. More specifically, the geodatabase elements consist of historical information, documents, descriptions of artistic characteristics of the building and the park, in the form of text and images. In addition, we used also floorplans, sections and views of the outer facades of the building extracted by a TLS-based 3D model of the whole Villa. In order to manage and explore these rich dataset, we developed a geodatabase using PostgreSQL and PostGIS as spatial plugin. The Web-GIS platform, based on HTML5 and PHP programming languages, implements the NASA Web World Wind virtual globe, a 3D virtual globe we used to enable the navigation and interactive exploration of the park. Furthermore, through a specific timeline function, the user can explore the historical evolution of the building complex

    Identification of C-band radio frequency interferences from Sentinel-1 data

    Get PDF
    We propose the use of Sentinel-1 Synthetic Aperture Radar (SAR) to provide a continuous and global monitoring of Radio Frequency Interferences (RFI) in C-band. We take advantage of the first 8-10 echo measures at the beginning of each burst, a 50-70 MHz wide bandwidth and a ground beam coverage of ~25 km (azimuth) by 70 km (range). Such observations can be repeated with a frequency better than three days, by considering two satellites and both ascending and descending passes. These measures can be used to qualify the same Sentinel-1 (S1) dataset as well as to monitor the availability and the use of radio frequency spectrum for present and future spaceborne imagers and for policy makers. In the paper we investigate the feasibility and the limits of this approach, and we provide a first Radio Frequency Interference (RFI) map with continental coverage over Europe

    Impact of scene decorrelation on geosynchronous SAR data focusing

    Get PDF
    We discuss the effects of the clutter on geosynchronous SAR systems exploiting long integration times (from minutes to hours) to counteract for two-way propagation losses and increase azimuth resolution. Only stable targets will be correctly focused whereas unstable targets will spread their energy along azimuth direction. We derive here a generic model for the spreading of the clutter energy based on the power spectral density of the clutter itself. We then assume the Billingsley Intrinsic Clutter Motion model, representing the clutter power spectrum as an exponential decay, and derive the expected GEOSAR signal-to-clutter ratio. We also provide some results from a Ground Based RADAR experiment aimed at assessing the long-term clutter statistics for different scenarios to complement the Internal Clutter Motion model, mainly derived for windblown trees. Finally, we discuss the expected performances of two GEOSAR systems with different acquisition geometries.Peer ReviewedPostprint (published version
    • …
    corecore