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ABSTRACT
This paper considers the use of a low cost mobile device in order to develop a mobile mapping 
system (MMS), which exploits only sensors embedded in the device. The goal is to make this 
MMS usable and reliable even in difficult environments (e.g. emergency conditions, when 
also WiFi connection might not work). For this aim, a navigation system able to deal with the 
unavailability of the GNSS (e.g. indoors) is proposed first. Positioning is achieved by a pedestrian 
dead reckoning approach, i.e. a specific particle filter has been designed to enable good position 
estimations by a small number of particles (e.g. 100). This specific characteristic enables its real 
time use on the standard mobile devices. Then, 3D reconstruction of the scene can be achieved 
by processing multiple images acquired with the standard camera embedded in the device. 
As most of the vision-based 3D reconstruction systems are recently proposed in the literature, 
this work considers the use of structure from motion to estimate the geometrical structure 
of the scene. The detail level of the reconstructed scene is clearly related to the number of 
images processed by the reconstruction system. However, the execution of a 3D reconstruction 
algorithm on a mobile device imposes several restrictions due to the limited amount of available 
energy and computing power. This consideration motivates the search for new methods to 
obtain similar results with less computational cost. This paper proposes a novel method for 
feature matching, which allows increasing the number of correctly matched features between 
two images according to our simulations and can make the matching process more robust.

1. Introduction

Thanks to the continuous increase of applications using 
geo-spatial data (Guarnieri et al. 2015; Habib et al. 2005; 
Pirotti et al. 2015; Remondino, Guarnieri, and Vettore 
2005), in the last decades several mobile mapping sys-
tems (MMSs) have been developed, mostly based on the 
use of terrestrial or airborne vehicles (Chiang, Noureldin, 
and El-Sheimy 2003; Kraus and Pfeifer 1998; Pirotti 
et al. 2014; Remondino et al. 2011; Toth 2001; Toth and 
Grejner-Brzezinska 1997), equipped with remote sens-
ing instruments such as laser scanners and cameras.

MMSs have become quite popular even among the 
general public due to the success of web tools which 
allow street view navigation. Despite the popularity of 
such applications, it is worth to notice that the acquired 
georeferenced spatial data can be used in definitely wider 
range of applications, in the real time case (e.g. loca-
tion-based services) and the post-processed one (e.g. by 
a Geographic Information System (GIS) (El-Sheimy and 
Schwarz 1998; Hadeel, Jabbar, and Chen 2011; Piragnolo 
et al. 2015; Tao 2013), and for recognition purposes 
(Facco, Masiero, and Beghi 2013; Facco et al. 2011; 
Jaakkola et al. 2010; Pfeifer, Gorte, and Winterhalder 
2004)).

The diffusion of MMSs has been limited until now by 
their quite high cost, mostly due to the need for quite 
expensive sensors (e.g. terrestrial laser scanners) and 
vehicles (e.g. cars). However, motivated by the world-
wide capillary diffusion of mobile devices (e.g. smart-
phones, tablets) embedded with both positioning (e.g. 
GNSS, inertial sensors) and remote sensing instruments 
(e.g. camera), several efforts have been recently spent in 
order to develop mobile MMSs based on smartphones.

Two great advantages are showcased with the devel-
opment of an MMS based on the use of a smartphone 
– the much lower cost comparing with other MMSs, and 
the much wider diffusion of these devices, which repre-
sents a potentially very large customer base. However, 
several challenging issues are related to the realization 
of such a system: first, the limited amount of available 
energy imposes stringent requirements on the system 
power consumption (and hence a restriction to the 
available computational resources) and/or on its bat-
tery autonomy. Furthermore, the current generation of 
smartphones is typically embedded with several MEMS 
sensors (Schiavone, Desmulliez, and Walton 2014), 
which, however, typically provide quite noisy meas-
urements (e.g. positioning obtained by means of only 
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inertial sensors is unreliable). For instance, although 
several works in the literature recently have tried to 
tackle the positioning problem by MEMS sensor meas-
urements when the GNSS signal is not available (or not 
reliable, as in certain city centers, or indoors), it is still 
a challenging problem (Chen, Meng, et al. 2015; Chen, 
Zou, et al. 2015; Bahl and Padmanabhan 2000; Huang 
and Gao 2013; Lukianto and Sternberg 2011; Saeedi, 
Moussa, and El-Sheimy 2014).

The aim of this paper is twofold. First, it aims at 
providing a new solution for the indoor positioning 
problem when the GNSS signal is not reliable (Piras, 
Marucco, and Charqane 2010). More specifically, this 
paper improves the positioning approach proposed in 
Masiero, Pirotti, et al. (2014). Here the positioning prob-
lem is tackled by means of the use of a pedestrian dead 
reckoning approach, referring to the study of Widyawan 
et al. (2012), and, similarly to the previous study 
(Masiero, Pirotti, et al. 2014), a computationally efficient 
particle filter is used (it requires a quite low number 
of particles, e.g. ~100). The proposed improvement is 
to make it more effective in a wide range of conditions 
of interest (e.g. in emergency conditions, during fire-
fighter intervention), in particular, a new movement 
mode detection method is proposed, and an altitude 
estimation based on the use of the barometer.

The standard camera embedded in the smartphone is 
used as a remote sensing device providing images to be 
processed in order to obtain a 3D reconstruction of the 
scene (or of the object of interest). Thus, the goal is to allow 
3D reconstruction based on the solution of the Structure 
from Motion (SfM) problem directly on the mobile device. 
The overall reconstruction algorithm can be summarized 
with the following steps: feature extraction and matching, 
reconstruction of the geometry of the scene, and compu-
tation of a dense 3D point cloud. Since the execution of 
such computations on the device can drastically reduce 
the battery life, reducing the power consumption needed 
for computing the 3D reconstruction is of fundamental 
importance. Several approaches have been recently con-
sidered in order to efficiently compute the solution of the 
SfM problem given a set of images (Agarwal et al. 2010; 
Brand 2002; Byröd and Åström 2010).

Independently of the specific adopted algorithm, it is 
clear that the accuracy and the computational complexity 
of the 3D reconstruction is closely related to the quality of 
the candidate matching features. In order to improve the 
results of the feature matching steps, this paper considers 
the use of an alternative feature description, similar to 
affine scale-invariant feature transform (affine SIFT, or 
ASIFT) (Morel and Yu 2011), that takes advantage of the 
information provided by the navigation system in order 
to improve the feature matching ability of the system, 
while simultaneously reducing the computational bur-
den required in the ASIFT approach. According to the 
results shown in Section 5, the proposed method allows 

to increase the number of correctly matched features 
with respect to the standard SIFT (i.e. with respect to 
the state of art).

2. System description

Most of the navigation systems on the market exploit the 
use of the GPS/GNSS signal, however, since this solu-
tion is not reliable in indoor environments in this paper 
an alternative navigation procedure will be considered: 
the proposed solution (that integrates information pro-
vided by a three-axis accelerometer, a three-axis mag-
netometer, and a barometer) is specifically designed to 
be usable in indoor environments (i.e. when GNSS is 
not reliable), however it can be used outdoors as well 
(as a stand-alone navigation system or integrated with 
the GNSS positioning and/or with WiFi information). 
Despite not considered in the minimum requirements, a 
three-axis gyroscope can be considered as well, in order 
to provide more reliable estimations of the change of 
the device orientation and of the heading direction. The 
geometrical characteristics of the building are assumed 
to be pre-loaded on the navigation device before starting 
the navigation algorithm.

In order to make the use of the system as simple 
(and comfortable) as possible to the user, the device is 
assumed to be hand held, and differently from most of 
the previously proposed systems for pedestrian naviga-
tion, the use of external sensors (e.g. Foxlin 2005; Ruiz 
et al. 2012; Widyawan et al. 2012) is not considered.

Remote sensing ability is achieved by using the stand-
ard camera sensor embedded in the smartphone. In this 
work, a SfM approach is used in order to provide 3D 
reconstruction of the environment. The accuracy and 
robustness of the obtained results is usually related to 
the ability of the 3D reconstruction algorithm to pro-
vide a (possibly) large number of good matches between 
features in different images: this typically ease both the 
estimation of the scene structure and the dense recon-
struction. Motivated by these considerations, in Section 
4 a novel method is proposed in order to improve SIFT 
(scale-invariant feature transform) feature matching 
and, consequently, the overall 3D reconstruction.

The proposed method is actually based on a simi-
lar rational of the ASIFT method (Morel and Yu 2009, 
2011), however, it improves the computational effi-
ciency of the ASIFT method taking into account of the 
information provided by the inertial measurement unit 
(IMU) and/or by the navigation system. Furthermore, 
the method requires an approximate knowledge of the 
value of the intrinsic camera calibration parameters (this 
information is usually available from the operative sys-
tem of the device).

The system has been developed in the Android envi-
ronment and the results provided in this paper have been 
obtained by a Huawei Sonic U8650 (Figure 1) and an 
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LG Google Nexus 5. Notice that, despite (since now) 
the system has been developed only for Android, this is 
not a limitation of the proposed approach, which actu-
ally can be considered for other operative systems (and 
devices) as well.

3. Navigation

Since in terrestrial applications often the height with 
respect to the floor is of minor interest, in this section 
the navigation problem will be separated in estimating 
movements on a planar map and on the vertical direc-
tion (Section 3.1). The positioning system that will be 
described in the following of this section is an evolution 
of that presented in Masiero, Pirotti, et al. (2014). The 
most significant differences are related to the estimation 
of the movements along the vertical direction (Section 
3.1), and to the detection of different movement modes 
(Section 3.2).

The rationale of the positioning system is that of 
using a dead reckoning-like approach (Foxlin 2005; Ruiz 
et al. 2012): detect the human steps by means of a proper 
analysis of the accelerometer measurements (Jahn et al. 
2010), then the combined use of magnetometer and 
accelerometer (and gyroscope, if available) measure-
ments allows to estimate the movement direction with 
respect to the North (Bonnet et al. 2009).

Let (ut, vt, wt) be the 3D position of the device (e.g. 
smartphone), expressed with respect to the North, East, 
and vertical directions (i.e. global reference system), 
before the t-th step, then

 

where st is the length of the t-th step, and αt is the corre-
sponding heading direction. Notice that an estimation 
of the initial 3D position (u0, v0, w0) is assumed to be a 
priori available.

(1)

[
ut+1

vt+1

]
=

[
ut

vt

]
+ st

[
sin �t
cos �t

]

The step length st is estimated by properly combining 
(in a linear estimation fashion) the current values of the 
following variables: the acceleration peak difference, the 
average of the acceleration absolute values in the time 
interval related to the considered step, the time duration 
of the step, and their inverse values. The weighting parame-
ters in the considered estimator are computed on a learning 
data-set. More details on the considered variables can be 
found in Jahn et al. (2010). Alternatively, st can be fixed to a 
constant value (an approximation of the mean step length): 
the tracking algorithm proposed in Masiero, Pirotti, et al. 
(2014) and summarized in this section is designed to com-
pensate (relatively small) step length errors.

The mobile device is supposed to be carried by the 
user’s hand and the heading direction is assumed to be 
approximately fixed with respect to the local coordi-
nate system (us, vs, ws), i.e. the user does not drastically 
change the device orientation during the navigation. 
The tracking system is designed to estimate and correct 
device attitude changes, with absolute value lower than 
36 degrees, with respect to the conventional orientation. 
Allowing free changes of the device orientation can be 
achieved by generalizing the initial heading estimation 
procedure proposed by Masiero, Pirotti, et al. (2014), or 
as done by Deng et al. (2015).

Let yt be the vector of measurements corresponding 
to the t-th step and Yt be the collection of measurements 
yτ from τ = 0 to t−1. Furthermore, let qt = [ut vt]

T, then 
the probability distribution of the estimated position qt 
after the (t−1)-th step is expressed as follows:

 

where qi,t and wi,t = 1/n are the position and weight of the 
i-th particle at t, while δ(·) is the Dirac delta function.

Then, at the next user’s step the above probability 
distribution is updated as follows:

•  for each particle i:
•  draw a sample qi,t+1 from the proposal distribution:

 

where the heading direction αi,t and the step length si,t 
are sampled from Gaussian distributions centered in αt 
and kst + bt, respectively. k and bt are scalar variables 
that aim at reducing the effect of measurement errors, 
as shown in Masiero, Pirotti, et al. (2014).

(2)    if qi,t+1 violates the geometrical constraints of 
the building, then the last part of the parti-
cle trajectory is rotated of a random angle αb,t 
(|αb,t| ≤ π/5). Since most of the times, the vio-
lation is due to small deviations of the heading 
direction from its true value (e.g. measure-
ment errors due to small calibration errors), 

(2)p
(
qt|Yt

)
=
∑n

i=1
wi,t�(qt − qi,t)

(3)qi,t+1 = qi,t + si,t

[
sin �i,t
cos �i,t

]

Figure 1. smartphone (Huawei sonic U8650) coordinate system 
(us, vs, ws).



4  A. MASiero eT Al.

occur in the considered environment, a linear model 
between pw and w can be considered as well).

At the beginning of the navigation procedure, p0 is 
estimated as (the average value of) the pressure meas-
urement(s) at the known altitude w0.

If certain environmental variables are known (e.g. 
temperature, georeferenced position, and corresponding 
value of the gravitational acceleration), then the value of 
the parameter a can be analytically computed. However, 
in order to reduce the measurement errors due to sensor 
calibration, the following simple procedure is adopted: 
since w0 is often expressed with respect to the ground 
and the initial position is assumed to be known, then a 
can be computed as the best fitting value in Equation (5) 
by measuring pw with w corresponding to the ground 
altitude.

The goal of the above procedure for the estimation of 
p0 and a is to be as simple (and fast) as possible for the 
user. However, it is worth to notice that a more robust 
estimation of such parameters should be adopted if pos-
sible (i.e. varying the altitude during the calibration pro-
cedure on all the range of the expected values of interest 
during the navigation).

Once the parameters p0 and a have been computed, 
the variation of altitude with respect to w0 can be esti-
mated as follows:

 

When an accurate estimation of w is required, a 
Kalman filter can be implemented as well to exploit the 
temporal smoothness of the device movements in order 
to reduce the influence of measurement errors.

3.2. Detection of movement mode

The rationale of this subsection is that of improving 
the positioning estimation by providing information 
about the current action of the user. For instance, step 
lengths are typically different when walking on the stairs 
with respect to walking on a corridor: hence with such 
information the positioning algorithm can easily adapt 
the step length according to the zone where the user is 
currently moving. Taking into account of the above con-
siderations, in the first part of this subsection a method 
for detecting several user’s movement modes will be 
presented. Then, Equation (4) will be updated in order 
to exploit the movement mode information.

To be more specific, the aim of this section is that of 
presenting a method for detecting five actions typically 
related to moving inside of a building: going up or down 
on stairs, and going in the up or down direction with a 
lift, walking on a floor.

A support vector machine (SVM) approach has 
been used in order to detect and correctly classify such 
actions. Measurements provided by the barometer and 
by the accelerometer are used as input for the classifying 

(6)
(
w − w0

)
= a log

p0
pw

small rotations of the last part of the trajectory 
can often tackle this issue.

(3)    if qi,t+1 still violates building geometrical 
constraints then set wi,t+1  =  0, otherwise set 
wi,t+1  =  1/n. When the WiFi connection is 
available, the weights can be computed tak-
ing into account also of the WiFi radio signal 
strength, as shown in Widyawan et al. (2012).

•  Scale the particle weights in order to normalize 
their sum to 1.

•  Resample n particles from the following

 

and set wi,t+1 = 1/n.
Notice that the computational complexity of this par-

ticle filter is linear with respect to the number of parti-
cles n, and, more interestingly, it allows to achieve good 
positioning performance while using a small number of 
particles (e.g. n ≈ 100).

The reader can refer to (Masiero, Pirotti, et al. 2014) 
for more details on the original version of the particle 
filter summarized above. The estimates obtained by this 
filter are integrated with those of the altitude described in 
Section 3.1 in order to obtain 3D estimations of the device 
position. 3D orientations can be obtained as well, by pro-
cessing the IMU measurements with a Kalman filter.

3.1. Estimating variations of altitude

The variations of the altitude of the device are esti-
mated in this subsection by measuring the variations of 
atmospheric pressure by means of a barometer embed-
ded in the mobile device. Since atmospheric pressure 
changes with time and space, a fast calibration proce-
dure is assumed to be performed at the beginning of 
the navigation. Furthermore, the working conditions 
are assumed to be invariant during the navigation, e.g. 
constant atmospheric pressure (and temperature): for 
instance, in ideal conditions (null measurement error) 
the same pressure value can be measured in the same 
spatial position at the beginning and at the end of the 
navigation. This assumption is clearly an approxima-
tion of the reality; however, it is reasonably good for 
the typical extent (in the spatial dimension and in the 
time duration) of pedestrian navigation.

According to the above assumptions (i.e. considering 
the atmosphere as an ideal gas at constant temperature), 
from Boyle and Stevino’s laws the pressure pw at an alti-
tude w can be expressed as follows:

 

where p0 is the pressure at altitude w0 (notice that in 
certain cases, for instance when changes of temperature 

(4)p
(
qt+1|Yt+1

)
≈
∑n

i=1
wi,t+1�(qt+1 − qi,t+1)

(5)pw = p0e
−(w−w0)∕a
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mode j given the current measurements. As shown in 
Section 5, the movement mode detector has low proba-
bility error, hence the detected mode is often the correct 
one, i.e. p

(
�t+1,j|Yt+1

)
 is close to 1 for the correct value 

of j. Furthermore, p
(
qt+1|Yt+1

)
 is formally defined sim-

ilarly to Equation (4). The main difference with respect 
to (4) is that in p

(
qt+1|Yt+1

)
 the parameter values can be 

particularized with respect to the specific case of interest, 
e.g. the mean step length while walking on a corridor is 
typically quite different with respect to that while going 
up/down on the stairs.

4. 3D reconstruction

In the proposed system, 3D reconstruction of the scene 
is obtained by means of SfM approach (Hartley and 
Zisserman 2003). To be more specific, the reconstruction 
procedure can be summarized as follows:

•  Computation and matching of feature points in the 
acquired images.

•  Solution of the SfM problem on the matched fea-
tures (i.e. bundle adjustment (Agarwal et al. 2010), 
or incremental SVD method (Brand 2002; Masiero, 
Vettore, et al. 2014)).

•  Dense point cloud computation (this is based on 
dense pixel matching in different images (Furukawa 
and Ponce 2010) and triangulation for comput-
ing the corresponding 3D positions (Hartley and 
Zisserman 2003; Masiero and Cenedese 2012)).

In particular, this section deals with the improvement 
of the first part of the reconstruction procedure, the fea-
ture matching step, while the other steps are performed 
with standard algorithms.

Feature matching is based on the appearance of the 
2D image regions in the neighborhood of the considered 
feature locations. Since images are taken from different 
point of views, the same feature can undergo certain 
appearance changes, then the goal of several matching 
techniques recently proposed in the literature is that of 
extracting features invariant to such deformations. As 
widely known, SIFT descriptors (Lowe 1999) allow to 
obtain reliable matching between features in two images 
when the images are related by a different scaling, illumi-
nation and rotation on the image plane (see Figure 2(b)). 
However, matching issues can occur when in presence 
of different changes of the point of view between the 
two images (e.g. rotations along the other two axes as in 
Figure 2(c) and (d)). As shown in Morel and Yu (2009), 
(2011), in this case local changes between features in the 
two images can be usually well represented by means of 
affine transformations.

In order to make the SIFT descriptor robust even to 
these kind of transformations, Morel and Yu (2009), 
(2011) proposed to simulate N = 32 versions of each of 
the original images, where each version simulates the 

machines: indeed, 5 SVMs are used, where each SVM is 
used to recognize one specific action.

All the SVMs use the same data input. A linear con-
version is used to properly relate the change of pressure 
measured by the barometer with the change of the device 
altitude. Then, a Δt interval of measurements is con-
sidered, and the following variables are provided to the 
SVM classifiers as input:

•  The mean altitude variation in the Δt interval (the 
value of this variable is obtained by a linear fit of 
the data in the considered interval).

•  The standard deviation (in the Δt interval) of the 
absolute value of the measured acceleration vector.

The mean altitude variation in Δt often allows to dis-
criminate each of the cases from a device moving on 
the same floor. Indeed, a significant (positive/negative) 
change on its value corresponds to a device movement 
(also) in the vertical (up/down) direction. Furthermore, 
its value is usually (approximately) fixed to a constant 
value when the user is not moving (e.g. as quite usual in 
a lift), whereas it can assume quite different values for 
different humans walking on stairs.

Despite such variable can often be successfully used to 
detect the actions of interest here, its reliability strongly 
depends on the length of the time interval Δt: computing 
the mean over a longer time interval allows to signifi-
cantly reduce the influence of the measurement noise and 
of the human movements, whereas for short time inter-
vals such factors can lead to wrong classification results.

The standard deviation (in the Δt interval) of the 
absolute value of the measured acceleration vector has 
been considered as well in order to improve the classifi-
cation results: in particular it can significantly improve 
the discrimination between going up/down with a lift or 
on the stairs: indeed, human (and consequently device) 
movements are usually quite limited while being in a lift, 
hence (excluding the initial lift acceleration and the final 
deceleration) the acceleration measured by the sensor is 
mostly similar to the gravitational acceleration. Instead, 
while walking the acceleration measured by the device 
is subject to significant changes due to the human steps: 
its mean value might be not so different from the grav-
itational acceleration, but its standard deviation (due to 
the acceleration changes due to the steps) results to be 
usually much larger than in the lift case.

Thanks to the use of the movement mode detec-
tor presented above, and by exploiting the law of total 
probability, the position estimation Equation (4) can be 
updated as follows:

 

where �t+1,j indicates the detection of the j-th mode at 
time t + 1, whereas p

(
�t+1,j|Yt+1

)
 is the probability of 

(7)

p
(
qt+1|Yt+1

)
=
∑
j

p
(
qt+1|Yt+1, �t+1,j

)
p
(
�t+1,j|Yt+1

)
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axis is approximated with (u0, v0) ≈ (c/2, r/2), where r and 
c are the number of image rows and of columns, respec-
tively. The parameter a is related to the focal length and 
to the pixel size. When the characteristics of the device 
are available, the value of a can be quite easily approxi-
mated. When no information on such characteristics is 
available, the procedure described in the following sec-
tion shall be repeated for different values of a ranging in 
the following interval (1/3(r + c), 3(r + c)) (Fusiello and 
Irsara 2010; Heyden and Pollefeys 2005), where the real 
value of a is supposed to be the value of a that allows to 
obtain the largest number of matching features.

Furthermore, let Rt be the matrix provided by the 
navigation system describing the device orientation 
during the acquisition of the image at time t. Since the 
approximate orientation matrix Rt is assumed to be avail-
able for all the acquired images, then, for each couple of 
acquired images I1 and I2, the corresponding orientation 
matrices and interior parameter matrix K are used in 
order to compute the approximate rectification of I1 with 
respect to I2, i.e. I1 is transformed in order to simulate 
the view from the same orientation of I2. After such 
transformation two corresponding features in the two 
images should have approximately the same orientation, 
hence the SIFT descriptor is modified in order to use 
absolute orientation angles instead of relative ones, i.e. 
invariance with respect to (large) rotations is now an 
undesired condition.

Since the navigation system provides also an esti-
mation of the device position at each time interval, for 
each couple of matched features it is possible to compute 
also an approximation of the corresponding scales: how-
ever, doing this for all the couples of candidate matched 
features might be time consuming, hence it might be 
optionally considered just for an (almost) final list of 
matched features.

Finally, exploiting the information provided by the 
navigation system and the approximate interior parame-
ter matrix K, an approximate fundamental matrix can be 
computed, and an approximate epipolar constraint can 
be imposed in order to reduce the number of candidate 
feature matchings. However, it is worth to notice that the 
fundamental matrix computed in this way is typically a 
quite rough approximation of the correct one, hence the 

appearance of the corresponding image after applying a 
specific affine transformation. The N affine transforma-
tions can be associated to different values of the rotation 
angles, i.e. they represent a discretization of the set of 
possible rotations that provide variant results to the SIFT 
descriptors (combinations of rotations as in Figure 2(c) 
and (d)). Then, feature points are extracted in all the N 
versions of the images. Thus, when searching for feature 
matching between image I1 and I2, all the corresponding 
SIFT descriptors are matched: all the possible combina-
tions of matchings are checked, i.e. the features extracted 
in each of the N versions of I1 are matched (when possi-
ble, according to the standard SIFT matching procedure, 
(Lowe 1999) with the features extracted in each version 
of I2. In accordance with the type of transformations 
applied to each image, this procedure is named affine 
SIFT. Applying the feature matching procedure (Lowe 
1999) to each couple of transformed images the compu-
tational time for feature matching is proportional to N2 
times that of the original SIFT.

Taking into account of the above considerations, the 
goal of this section is that of exploiting the information 
provided by the navigation system in order to improve 
the performance of the SIFT-based feature matching but 
at a lower computational cost with respect to the affine 
SIFT.

First, in order to make the use of system as simple as 
possible for the user, the camera embedded in the device 
is assumed to be uncalibrated (see (Karel and Pfeifer 
2009; Ma et al. 2004; Remondino and Fraser 2006) 
for camera calibration and its advantages). However, 
in most of the cases it can be approximated by a pin-
hole camera. Then, notice that despite the real value of 
the interior parameter matrix K is unknown, it can be 
roughly approximated as follows:

 

where pixels are assumed to be approximately squares, 
sensor axes are assumed to be orthogonal, and the dis-
placement of the sensor center with respect to the optical 

(8)K =

⎡⎢⎢⎢⎣

a 0 u0

0 a v0
0 0 1

⎤⎥⎥⎥⎦

Figure 2.  examples of image views obtained by rotating the camera around the object of interest. (a) original camera pose. (b) 
rotating along the optical axis of the original camera pose. (c) rotating the camera toward the right of the object. (d) rotating the 
camera toward the top of the object.
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the same floor of that of the calibration procedure is 
of 0.2 m. Hence, the simple parameter learning proce-
dure previously proposed can be useful when the goal 
is that of detecting changes of floors, however when the 
required estimation error has to be relatively small it 
has to be used only in the range of altitudes considered 
during the learning of the model parameters (hence in 
order to obtain reliable estimations on a larger range of 
altitudes it is necessary to increase the range of altitudes 
also during the learning of the model parameters).

The detection of movement modes has been validated 
in the same university building previously considered. 
In order to make the system as simple as possible to 
use for an unqualified user, the results reported in the 
rest of this section have been obtained with uncalibrated 
sensors (however, the use of calibrated sensors allows to 
significantly improve the results).

Measurements involved the use of two stairs and two 
lifts, going in both up and down directions. Figure 3 
shows the training results for the SVM classifier of the 
action of going down on the stairs (Δt = 3 s).

The mean altitude variation during the interval Δt 
long typically allows to properly discriminate each of the 
cases of interest. On the one hand, going up/down leads 
to positive/negative mean altitude variation, while, on 
the other hand, being in a lift or on the stairs can usually 
be determined by comparing the absolute value of the 
mean altitude variation (that is usually (approximately) 
fixed to a constant value for a lift). The latter case can 
be also distinguished by considering the standard devi-
ation (during the Δt interval) of the absolute value of 
the measured acceleration vector: human (and device) 
movements are usually quite limited while being in a lift, 
leading typically to a small standard deviation. Instead, 

approximate epipolar constraint should be applied with 
a threshold significantly larger than 0.

Interestingly, this approach allows to perform the fea-
ture matching procedure with a constant computational 
burden (with respect to N), thus significantly reducing 
the computational complexity with respect to the affine 
SIFT. The performance (in terms of correctly matched 
features) of the proposed matching feature procedure 
will be shown in the next section.

5. Results

The positioning approach presented in this work is 
an evolution of that in Masiero, Pirotti, et al. (2014). 
In this section, the functionality of the main changes 
with respect to (Masiero, Pirotti, et al. 2014) is tested, 
i.e. the altitude estimation and the detection of differ-
ent movement modes (and their use during navigation). 
Experiments have been conducted on three floors of a 
university building, and in order to make the results 
statistically more robust, experimental data have been 
collected by three volunteers, two men and one woman, 
with heights from 1.65 to 1.85 m.

First, the (variation of) altitude estimation has been 
tested on 21 check points distributed on two buildings, 
where the range of considered altitudes ranges from 
the ground to 5 m, approximately. The average altitude 
estimation is of 0.6 m, approximately. However, this has 
been obtained learning the parameters of the estimation 
model varying the device altitude of only 1 m, approx-
imately, whereas the computed estimation model was 
used mostly outside of the altitude range used in the cali-
bration. Instead, the altitude estimation error obtained 
restricting the considered altitudes only to those on 

Figure 3. training results of the sVm aiming at classifying the action of going down on the stairs. the time interval Δt has been set 
to 3 s.



8  A. MASiero eT Al.

during a walk the acceleration measured by the device 
can change because of the human steps, leading to a 
much larger value of the standard deviation.

The two considered variables most of the times can 
be successfully used to detect the four actions of interest 
here. However, the reliability of the computed classifiers 
strongly depends on the length of the time interval Δt. 
The longer is the interval, the smaller is the influence 
of measurement noise (and of the human movements).

Figure 4 compares the classification error obtained 
with the SVM classifiers by varying the value of the time 
interval Δt (from 0.5 to 3 s). The reported results are the 
mean of 100 independent Monte Carlo simulations. As 

Figure 4. comparison of the classification error obtained with the sVm classifiers by varying the value of the time interval Δt. the 
reported results are the mean of 100 independent monte carlo simulations.

Figure 5. portion of estimated trajectory distributed on two floors, (a) and (b).

Figure 6. Details of an image region close to a feature point in 
the first (a) and in the second camera view (b). image region 
taken from (a) remapped accordingly to the (approximate) 
orientation of the second camera view (c).
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20% reduction of the estimation error with respect to 
the standard case (3.2–4.0 m error, respectively).

For what concerns the feature matching approach 
presented in Section 4, first the effect of (approximate) 
image rectification is shown in Figure 6. Figure 6(a) and 
(b) show the details of the same window (with a corre-
sponding feature) given in two different images (Figure 
6(a) and (b) have been obtained by cropping two much 
larger images of the façade of a university building), 
whereas Figure 6(c) shows the approximately rectified 
version of Figure 6(a) to be more easily comparable to 
Figure 6(b). It is clear that the use of uncalibrated sen-
sors ensures lower quality results with respect to those 

shown in the figure, the number of classification errors 
becomes less than 5% when considering Δt ≥ 2 s.

Then, the use of the movement mode detector has 
been tested during navigation: a slightly adapted version 
of the Widyawan’s particle filter (Widyawan et al. 2012) 
has been applied in order to track the device while the 
user is going on the stairs (Figure 5(a) and (b) show 
an estimated trajectory sample (distributed among two 
floors); 50 trajectories have been considered). WiFi has 
been deactivated to validate the functionality of the posi-
tioning approach based on the use of the inertial sensor 
measurements. The use of the movement mode detector 
during the navigation (i.e. by means of (7)) allowed a 

Figure 7. example of images used for testing the feature matching procedure. feature matchings shown in the figure have been 
obtained by means of the sift.

Figure 8. number of correctly matched features varying the angle between the camera poses. comparison of number of matched 
features with standard sift (blue x-marks), and with the method proposed in section 4 (red circles).
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expected in a calibrated case. Nevertheless, the rectifi-
cation procedure has partially succeeded in producing 
an image more similar to the middle one with respect 
to the left one, in particular close to the feature posi-
tion. Interestingly, by comparing the left border of the 
synthetic window (Figure 6(c)) with that in Figure 6(a) 
and (b), it is possible to notice that obviously the system 
cannot properly estimate image parts that are not visible 
in the original image (e.g. the internal left border of the 
window is not visible in the Figure 6(a), and, conse-
quently, it cannot be presented in Figure 6(c) as well).

Then, the feature matching approach has been tested 
on a set of images downloadable on the Internet from 
the website of (Lhuillier and Quan 2005) (Figure 7 shows 
two of them, with the corresponding SIFT feature points; 
the size of all the considered images is 640 × 480 pixels). 
Since orientation information is not available for these 
images, approximate orientations have been computed 
after matching the features in the images and adding to 
the computed orientation angles a Gaussian random noise 
with standard deviation 0.15 radiant (100 independent 
Monte Carlo simulations have been considered in order 
to provide statistically reliable results). Figure 8 compares 
the number of correctly matched features by the proposed 
method (red circles) with that obtained by means of the 
standard SIFT (blue x-marks) varying the value of the 
rotation angle between the two camera poses (feature 
locations and SIFT descriptors have been computed with 
VLFeat (Vedaldi and Fulkerson 2010) for both the consid-
ered methods). The proposed method allowed to detect 
approximately 23% more correct feature matchings.

6. Conclusions

This paper presented recent improvements on an indoor 
positioning approach and a new strategy to improve fea-
ture matching results. The proposed navigation approach 
has been designed to work even in particularly difficult 
working conditions, e.g. with uncalibrated sensors, when 
WiFi connection is not available. The method presented 
here allows to estimate altitude variations and to exploit 
a movement mode detector in order to improve posi-
tioning estimation (20% of positioning error reduction, 
approximately, with respect to the version not using the 
movement mode detector).

Furthermore, the presented method for feature match-
ing has reduced the computational burden required by 
the ASIFT, while ensuring a significant improvement in 
the number of correctly matched features with respect 
to the standard SIFT.
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