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SEMI-AUTOMATED DETECTION OF SURFACE DEGRADATION ON BRIDGES BASED
ON A LEVEL SET METHOD

KEY WORDS: Deterioration detection, Monitoring, Large infrastructures, Level sets, Image segmentation

ABSTRACT:

Due to the effect of climate factors, natural phenomena and human usage, buildings and infrastructures are subject of progressive
degradation. The deterioration of these structures has to be monitored in order to avoid hazards for human beings and for the natural
environment in their neighborhood. Hence, on the one hand, monitoring such infrastructures is of primarily importance. On the other
hand, unfortunately, nowadays this monitoring effort is mostly done by expert and skilled personnel, which follow the overall data
acquisition, analysis and result reporting process, making the whole monitoring procedure quite expensive for the public (and private,
as well) agencies.
This paper proposes the use of a partially user–assisted procedure in order to reduce the monitoring cost and to make the obtained
result less subjective as well. The developed method relies on the use of images acquired with standard cameras by even inexperienced
personnel. The deterioration on the infrastructure surface is detected by image segmentation based on a level sets method. The results
of the semi-automated analysis procedure are remapped on a 3D model of the infrastructure obtained by means of a terrestrial laser
scanning acquisition.
The proposed method has been successfully tested on a portion of a road bridge in Perarolo di Cadore (BL), Italy.

1. INTRODUCTION

Surfaces of human infrastructures are subject to degradation, mostly
due to the effect of (natural) climate elements (sun, rain, wind), to
human dependent factors (e.g. increase in the volume of traffic)
and to aging.

Nowadays, the monitoring activity of the state of these infras-
tructures is mostly done by visual inspection performed by ex-
pert staff: these highly skilled personnel is involved in periodical
recognitions, recording and reporting of the updated infrastruc-
ture conditions. It is worth to notice that this procedure typically
provides subjective results (conditions are typically subjectively
reported on questionnaires) at a quite high cost, related to the rel-
atively frequent use of expert staff.

This paper proposes a different approach in order to reduce the
cost of infrastructure monitoring.

The goal of surface infrastructure monitoring is that of periodi-
cally updating the detected conditions on a digital representation
of the infrastructure, in order to ease the control of the degrada-
tion temporal evolution by specific human operators (Costantino
and Angelini, 2013a, Costantino and Angelini, 2015, Camarda et
al., 2010, Guarnieri et al., 2013).

In this work, the digital 3D representation of the infrastructure is
obtained by means of terrestrial laser scanning (TLS). Notice that
the use of TLS devices is usually reserved to skilled personnel,
hence this is usually a quite expensive operation. For this reason,
the use of TLS in this work is limited to una tantum acquisition
typically done at the beginning of the monitoring. Nevertheless,
other TLS acquisitions can be considered in the following, when
required by the occurrence of specific conditions.

Instead, the degradation detections and condition updates are ob-
tained by the analysis of photos acquired by standard digital cam-
eras (not necessarily professional, e.g. cameras embedded in
smartphones). Then, the degradation results are mapped onto
their correspondent positions on the TLS-based 3D model of the
infrastructure.

The main advantages of this integrated strategies approach are as
follows:

• The use of digital cameras is commonly considered a much
simpler operation than TLS acquisition, hence it can be per-
formed by not highly skilled personnel. This allows a sig-
nificant monitoring cost reduction, and/or the possibility of
more frequent degradation observations.

• Despite some work has been done in order to exploit the lu-
minance of laser scanner radiation in order to classify mate-
rials (Costantino and Angelini, 2013b), actually the analysis
of the surface degradation status is usually simpler on digital
images than on laser scanning data.

• The reprojection of the detected deterioration results on the
3D model of the infrastructure help the operator to realize
the overall conditions of the infrastructure (e.g. the areas
where deterioration is more remarkable) and to follow the
temporal evolution of the degradation.

A quite common choice is to exploit level set methods as an ef-
ficient image segmentation tool (Sethian, 1999, Sethian, 2001,
Osher and Fedkiw, 2003): accordingly to other previous works
(Cerimele and Cossu, 2007, Cerimele and Cossu, 2009), this pa-
per considers the use of level set methods applied to the L∗, a∗,
b∗ color space. As shown in Section 2., the use of L∗, a∗, b∗

instead of the RGB color space allows to successfully reduce the
correlation between different color channels.

Details on the whole segmentation procedure are provided in the
next section, while the experimental results on a portion of a road
bridge in Perarolo di Cadore (BL), Italy, are shown in Section 3.
Finally, some conclusions are drawn in Section 4.

2. ASSESSMENT OF DEGRADED SURFACE AREAS

The data analysis procedure works as follows: once the images
are acquired they are separately processed by an ad hoc algo-
rithm. Notice that if the number of images is sufficiently large



and with a proper overlapping level, then a 3D photogrammetric
reconstruction would be possible as well. Despite this case would
be more informative, actually it typically requires an higher level
of accuracy during the image acquirement process. Therefore, in
order to keep the image capture task as simple as possible, in the
proposed method the data analysis is performed on each single
image.

The image analysis procedure is user-assisted in its first step (step
(a) of the following procedure), whereas the following ones are
performed automatically:

(a) The user pinpoints the matches between a set of points in
the image and in the 3D infrastructure representation: these
correspondences are used for determining the infrastructure
surfaces to be controlled and to assess the local map between
the image points and their 3D coordinates.

(b) Automatic modal decomposition of the image values (ac-
cording to a convenient L∗, a∗, b∗ representation) on the re-
gion of interest.

(c) Region segmentation (i.e. determination of deteriorated ar-
eas) based on a level sets method.

(d) Remapping of the segmentation curves on the 3D represen-
tation.

The above steps will be detailed in the following.

2.1 Identification of the regions of interest and of the camera
pose

The user manually select a set of matching points on the im-
age and on the 3D model. Let {Mi}i=1,...,n be the set of (non-
coplanar) 3D points and {mi}i=1,...,n the corresponding 2D co-
ordinates on the image plane. The distortion caused by the lens
of the acquisition camera is assumed to be negligible or already
estimated and properly corrected. Hence, without loss of gen-
eralization, hereafter the coordinates {mi}i=1,...,n on the image
plane are assumed to be distortion free.

A subset of the {mi} points is used by the user to outline polyg-
onal curves for delimiting the areas to be analyzed, e.g. areas
to be analyzed are delimited by the user by using closed polyg-
onal curves. Each of these areas is assumed to be well approxi-
mated by a planar surface. The j-th area is delimited by the points
{mij}i=1,...,nj , with nj ≥ 3, for each j.

Camera position and orientation with respect to the reference sys-
tem used to express the {Mi} points can be computed in closed-
form as described in the following (Ma et al., 2003).

According to the pinhole camera model, undistorted camera mea-
surements can be modeled as follows:

mi =
P12[M>i 1]>

P3[M>i 1]>
, (1)

where P12 and P3 are the first two rows and the third row, respec-
tively, of the camera projection matrix P . The projection matrix
P can be expressed in terms of the matrix of inner parameters
K and of the camera position t and orientation matrix R with
respect to the global reference system: P = K[R −Rt].

By simple matrix manipulations of (1), it immediately follows
that the value of the matrix P can be estimated (in closed–form)
by solving a simple linear system:[

−M>i 1 0 0 uiM
>
i ui

0 0 −M>i 1 viM
>
i vi

]
p = 0 , (2)

for i = 1, . . . , n, where p is a unit vector containing the normal-
ized values of P , and mi = [ui vi]

>. A scaled version of P can
be obtained by simply rearranging the terms in p.

Once P has been computed (up to a scale factor), the matrices K
and [R| − Rt] can be computed as the results of the QR factor-
ization, (Golub and Loan, 1989), of the first three columns of P .
The scale factor of P can be obtained by imposing that the term
on the last column and last row of K is equal to one. Finally, t
can be computed by pre-multiplying the forth column of P with
−R−1K−1.

The above estimation can be improved by using bundle adjustment–
like procedures in order to obtain more accurate estimations (Ma
et al., 2003), if needed.

Points {mi}i=1,...,n and {Mi}i=1,...,n will be used also in sub-
section 2.5 to map the 2D segmentation results onto the 3D bridge
points.

2.2 L∗, a∗, b∗ representation

Images acquired by standard cameras are usually represented in
the RGB (red, green, blue) color space. Despite being convenient
for the visualization on standard displays, this space is not the
most suitable when dealing with segmentation purpose. Indeed
in the RGB representation each color channel is typically highly
correlated with the others, making the analysis of the three chan-
nels mostly redundant.

In order to tackle this issue, the L∗, a∗, b∗ representation for the
image colors is considered as it allows to obtain much less corre-
lated color channels.

The conversion between RGB and L∗, a∗, b∗ color space is usu-
ally described by passing through the XY Z representation:

 X
Y
Z

 =

 0.4125 0.3576 0.1804
0.2127 0.7152 0.0722
0.0193 0.1192 0.9502

 R
G
B

 (3)

and

L∗ = 116f(Y/Yn)− 16 (4)
a∗ = 500[f(X/Xn)− f(Y/Yn)] (5)
b∗ = 200[f(Y/Yn)− f(Z/Zn)] (6)

whereXn, Yn,Zn represent the (normalized) values representing
the white color in theXY Z representation, and the function f(·)
is defined as follows:

f(t) =

{
t1/3 if t > (6/29)3(
29
6

)2 t
3

+ 4
29

otherwise.
(7)



Figure 1: Example of region to be segmented.

In order to validate the above considerations on correlations among
RGB and L∗, a∗, b∗ channels, the Pearson correlation coefficient
has been computed as well. In the case of the image shown in
Fig. 1, this coefficient results to be 0.97 for the red and green
color channels (Fig. 2), whereas it is 0.03 for the L∗ and a∗ chan-
nels (Fig. 3). Correlation between the red and green channel is
also apparent in Fig. 2, while L∗ and a∗ are weakly correlated as
shown in Fig. 3. Similar considerations can be repeated for the
the other possible couples of channels.

Figure 2: Red (top) and green (bottom) color channels for the
image in Fig. 1. Brighter pixels are associated to higher values of
the considered variables.

Figure 3: L∗ (top) and a∗ (bottom) channels for the image in
Fig. 1. Brighter pixels are associated to higher values of the con-
sidered variables.

To simplify the notation hereafter a one dimensional signal will

be considered (i.e. the lightness L∗). Nevertheless the approach
can be extended to the three dimensional signal case.

2.3 Lightness multimodal density

The goal of this step is to estimate the probability density of the
lightness L∗ values in the region of interest: such density is usu-
ally a multimodal density, where each mode is typically associ-
ated to a region with different characteristics. Hence, the rational
is that of obtaining a rough segmentation of the region in differ-
ent areas according to the distribution of the lightness values in
different modes.

The histogram of the lightness values will be considered as a sam-
ple approximation of the probability density. Fig. 4 shows the
histogram corresponding to the multimodal lightness density of
image in Fig. 1.

Figure 4: Example of histogram of lightness values, correspond-
ing to the image in Fig. 1.

It is assumed that the mode with the largest number of associ-
ated pixels corresponds to the non-deteriorated region, this way,
it is possible to easily distinguish between non-deteriorated and
deteriorated regions (those corresponding to the larger mode and
to the others, respectively). Similar considerations allow to draw
analogous conclusions if the algorithm can associate the most sig-
nificant mode to deteriorated regions.

Otherwise, when neither of the above cases can be considered,
associating a different region to each mode (i.e. to each local
maximum in the probability density), it is possible to segment
regions characterized by different statistics, but without automat-
ically distinguishing which correspond to the deteriorated ones

Once the number of modes m has been determined (for instance
by using local maxima detection), the separation between dif-
ferent modes is done on the histogram based on the Otsu’s m-
thresholding method (Otsu, 1975, Otsu, 1979). Otsu’s method
provides the threshold τi to separate the histogram bins associ-
ated to the i-th detected mode from those associated to the (i+1)-
th, for i = 1, . . . ,m− 1.

In order to simplify the presentation, without loss of generaliza-
tion hereafter only two regions are considered, i.e. m = 2, sepa-
rable by means of the threshold τ . The generalization to a generic
value of m is immediate.



2.4 Region segmentation

Region segmentation considered in this subsection is the final
step to be done in order to separate deteriorated areas from the
non-deteriorated ones. The approach considered here is level set
segmentation-like (Sethian, 1999, Sethian, 2001, Osher and Fed-
kiw, 2003).

First, a rough segmentation is obtained by means of the model
decomposition presented in the previous subsection: the number
of segmented areas to be considered is set equal to the number of
detected modesm. Then, a pixel is assigned to the i-th segmented
area if its lightness value has been assigned in the previous sub-
section to the i-th mode, for i = 1, . . . ,m.

Unfortunately, the above rough segmentation is usually very noisy,
hence the following level set method is applied:

• The closed curve Γ separating the two regions of interest on
the image is implicitly described as

Γ = {(x, y) | φ(x, y) = 0} , (8)

where (x, y) are the coordinates on the image domain and
the level set function φ(x, y) will be described in the fol-
lowing.

• The level set function is initialized as L∗(x, y)−τ , then it is
evolved by considering both the positions where edges are
more probable in the images (i.e. where it is more likely to
have the border between the two regions) and the regularity
(i.e. smoothness) of the curve:

∂φ

∂t
= −S · ∇φ+ k|∇φ| , (9)

where the first term on the right side of the above equation,
S ·∇φ, corresponds to the introduction of an external vector
field related to the image edges, whereas the second term,
k|∇φ|, aims at increasing the curve smoothness.

• In this work the external vector field S corresponds to an
edge detection function. Let IG be the original image fil-
tered by a Gaussian and LoG be the Laplacian of Gaussian
filter:

IG = G ∗ I , (10)

and

LoG(x, y) = − 1

πσ4

(
1− x2 + y2

2σ2

)
e
− x

2+y2

2σ2 , (11)

where ∗ stands for the 2-dimensional convolution and the
Gaussian filter G is defined as follows

G(x, y) =
1

2πσ2
e
− x

2+y2

2σ2 . (12)

Let IL = LoG ∗ I , then, S on the point (x, y) is defined as
follows:

S(x, y) = IL(x, y)
∇IG(x, y)

|∇IG(x, y)| , (13)

that is, the magnitude of the external field in (x, y) is de-
termined by IL(x, y) (i.e. the value of the original image
I filtered with the LoG operator), whereas the direction of
the the external field is determined by the filtered gradient
of the image, ∇IG(x, y), normalized by its length. Where
the gradient is equal to 0, S(x, y) is set to be a zero vector
as well.

2.5 Remapping of the segmented regions

Once the regions have been segmented the resulting boundaries
have to be remapped on the 3D space in order to spatially posi-
tioning them on the infrastructure.

By assumption each of the areas to be segmented can be well
approximated as a planar surface, hence a local two-dimensional
coordinate system can be defined on such surface.

Consider the j-th analyzed area, delimited by the points {mij}i,
i = 1, . . . , nj , with nj ≥ 3, for each j. Since the considered area
can be approximated as a planar surface, each of its point can be
expressed as a linear combination of 3 non–collinear points in
{mij}i, i = 1, . . . , nj . Without loss of generalization, let mi1,
mi2, mi3 be non-collinear.

Furthermore, let u = mi1 and let U be the result of the Gram-
Schmidt orthogonalization of the matrix [mi2−mi1 mi3−mi1].

Then, each point M∗ of the planar surface of interest can be ex-
pressed as follows:

M∗ = u+ Ux , (14)

x ∈ R2, where, with a slight abuse of notation, hereafter x cor-
responds to the point coordinates according to the new reference
system.

Let M∗ be the 3D point associated to a 2D point m∗ on the seg-
mentation boundary. Accordingly to (1), the 3D positionM∗ can
be obtained from the following:

(m∗P3 − P12)

[
M∗

1

]
= 0 . (15)

Substituting (14) in the above equation,

(m∗P3 − P12)

([
u
1

]
+

[
U
0

]
x

)
= 0 , (16)

and, after simple matrix manipulations of the above equation:

x = −
(

(m∗P3 − P12)

[
U
0

])†
(m∗P3 − P12)

[
u
1

]
.

(17)

Finally, M∗ can be obtained from (14).

3. RESULTS

The proposed method has been tested on a road bridge located
in Perarolo di Cadore, a small village in the Italian alps. The
considered bridge is shown in Fig. 5, whereas the cloud points of
a portion of the bridge (acquired by means of TLS) is shown in
Fig. 6.

The image segmentation results obtained (by means of the level
set method described in the previous section) for the image in
Fig. 1 are shown in Fig. 7. The region considered in the anal-
ysis of this image is a portion of the planar surface under the
bridge, delimited by green lines in the figure. Instead, segmented
regions are delimited by red lines: the regions corresponds to
degraded areas, where degradation has been probably caused by
percolation issues. It is worth to notice that segmentation shown
in the figure corresponds to the separation between the two largest
modes in Fig. 4: this is sufficient to distinguish the areas where
degradation is more clear, whereas, if needed, segmentation based



Figure 5: Road bridge located in Perarolo di Cadore considered
in as test case in this work.

Figure 6: Cloud points of a portion of the road bridge of Fig. 5.

Figure 7: Example of segmentation results, corresponding to the
image in Fig. 1. The region considered for the analysis is de-
limited by the green lines, whereas boundaries of the segmented
areas are indicated by red lines.

on the other modes with lower intensity in Fig. 4 can be used to
distinguish other areas in the figure with other (i.e. lower) levels
of degradation.

Similarly, the results for another portion of the bridge are shown
in Fig. 8.

Figure 8: Example of segmentation results.

Once the 2D regions have been segmented, their boundaries can
be remapped on the 3D space accordingly to the procedure de-
scribed in subsection 2.5. For instance, the segmentation bound-

aries in Fig. 7 can be remapped as shown in Fig. 9 (in order to
improve the readability of the figure, x points (computed as in
(17)) are shown instead of M∗).

Figure 9: Example of segmentation results: boundaries of de-
tected degradation areas of Fig. 7 remapped in the 3D space (in
order to improve the readability of the figure, x points are shown
instead of M∗).

Actually, the segmentation boundaries can be remapped on the
3D-model as well: Fig. 10 shows the curve formed by the seg-
mentation boundary points {M∗} (obtained from (14)) superim-
posed on the cloud points data. In order to ease the visualization
of the results the figure shows a zoom on a specific (and signif-
icant) portion of the original image, viewed from an observation
direction approximately orthogonal to the analyzed surface.

Figure 10: Example of segmentation results: a portion of the
segmentation boundaries (red lines) remapped in the 3D space.
Boundary lines are superimposed to the cloud points acquired by
means of TLS. Observation direction is approximately orthogo-
nal to the analyzed surface.

4. DISCUSSION AND CONCLUSIONS

This paper proposed a semi-automated method that exploits level
set image segmentation in order to estimate the boundaries of de-
graded regions on complex infrastructures, e.g. the bridge con-
sidered in this work.

As shown in the obtained results, the method allows to obtain



appropriate 2D region boundaries (Fig. 7 and 7), which can be
remapped on the 3D-model as well (Fig. 9 and 10).

Despite our results are quite encouraging, some work has still
to be done in order to make the whole procedure as simple as
possible to the user. In particular, the case of the analysis of pe-
riodicals recordings of the same infrastructure will be considered
in the future. The rational in such case is that of properly exploit-
ing information already available from previous analyzed data to
reduce the interaction with the user, i.e. to make the procedure
more autonomous.

Furthermore, this work relies on the use of differences in the
lightness values in order to distinguish different areas. Despite
this is quite intuitive, it might be subject to errors in certain cases.
Future investigation will be dedicated to the use of different im-
age analysis techniques (e.g. (Geladi and Grahn, 1996, Facco et
al., 2011, Facco et al., 2013)) in order to provide more robust
results from this point of view.

Finally, our future investigations will also consider the evaluation
of possible issues related to the use of reconstructed 3D model
(Tucci et al., 2012).
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Ma, Y., Soatto, S., Košecká, J. and Sastry, S., 2003. An Invitation
to 3D Vision. Springer.

Osher, S. and Fedkiw, R., 2003. Level set methods and dynamic
implicit surfaces. Vol. 153, Springer Science & Business Media.

Otsu, N., 1975. A threshold selection method from gray-level
histograms. Automatica 11(285-296), pp. 23–27.

Otsu, N., 1979. A threshold selection method from gray-level
histograms. Systems, Man and Cybernetics, IEEE Transactions
on 9(1), pp. 62–66.

Sethian, J., 1999. Level Set Methods and Fast Marching Meth-
ods: Evolving Interfaces in Computational Geometry, Fluid Me-
chanics, Computer Vision, and Materials Science. Cambridge
Monographs on Applied and Computational Mathematics, Cam-
bridge University Press.

Sethian, J., 2001. Evolution, implementation, and application of
level set and fast marching methods for advancing fronts. Journal
of Computational Physics 169(2), pp. 503 – 555.

Tucci, G., Cini, D. and Nobile, A., 2012. A defined process to
digitally reproduce in 3D a wide set of archaeological artifacts
for virtual investigation and display. Journal of Earth Science
and Engineering 2(2), pp. 118–131.


