33 research outputs found

    Geostatistical methods to map the probability of hydrogeotoxic risk by high As concentrations in groundwater. Case study in Ávila province ( Spain)

    Full text link
    [EN] The presence of As in groundwater is a priority public health issue because it imposes serious restrictions on drinking water. Mapping probabilities of exceedance of the threshold permitted by the World Health Organization, WHO (10 μg/L) allow delimiting the most vulnerable areas. The existing geostatistical techniques are a common tool for the evaluation of these maps, though, there is no agreement on which of the methods is the best. In this study different comparison criteria are illustrated. Seven non-parametric kriging methods are used to estimate the map of probability of exceeding the As concentration the limit of 10 mg/L in groundwater at the province of Ávila. Performed validation reveals that one the best results correspond to the simplicial indicator kriging, never before compared in studies of presence of geogenic As in groundwater.[ES] La presencia de As en las aguas subterráneas es un problema prioritario de salud pública e impone serias restricciones en el agua de consumo. Los mapas de probabilidad de superar el umbral permitido por la Organización Mundial de la Salud, OMS (10 μg/L) permiten delimitar las áreas que más riesgo presentan en relación con este parámetro. Las técnicas geoestadísticas constituyen una herramienta de uso común para elaborar estos mapas, aunque lamentablemente no hay un acuerdo sobre qué técnica es la más adecuada. El presente estudio recopila distintos criterios para decidir qué método presenta resultados más robustos. Se utilizan siete métodos de kriging no paramétrico en la estimación del mapa de probabilidad de que la concentración de As en manantiales de la provincia de Ávila supere el límite de 10 μg/L. La validación revela que uno de los mejores resultados es del simplicial indicator kriging, nunca antes tenido en cuenta en estudios sobre presencia de As geogénico en aguas subterráneas.Los autores agradecen a la Obra Social de Caja de Ávila el apoyo a la investigación, al financiar el proyecto “Manantiales de la provincia de Ávila (2006-2007)” y a los revisores anónimos por los comentarios realizados.Guardiola-Albert, C.; Pardo-Igúzquiza, E.; Giménez-Forcada, E. (2017). Métodos geoestadísticos para la elaboración de mapas de probabilidad de riesgo hidrogeotóxico (HGT) por altas concentraciones de As en las aguas subterráneas. Aplicación a la distribución de HGT en la provincia de Ávila (España). Ingeniería del Agua. 21(1):71-85. doi:10.4995/ia.2017.6798.SWORD7185211Aragonés Sanz, N., Palacios Diez, M., Avello de Miguel, A., Gómez Rodríguez, P., Martínez Cortés, M., Rodríguez Bernabeu, M.J. 2001. Nivel de arsénico en abastecimientos de agua de consumo de origen subterráneo en la Comunidad de Madrid. Revista Española de Salud Pública, 75, 421-432.Barroso, J.L., Lillo, J., Sahún, B., Tenajas, J. 2002. Caracterización del contenido de arsénico en las aguas subterráneas de la zona comprendida entre el río Duero, el río Cega y el Sistema Central. In: Presente y Futuro del agua subterránea en España y la Directiva Marco Europea. Zaragoza, Spain, 77-84.Brus, D.J., Gruijter, J.J., Walvoort, D.J.J., de Vries, F., Bronswijk, J.J.B., Römkens, P.F.A.M., de Vries, W. 2002. Mapping the probability of exceeding critical thresholds for cadmium concentrations in soils in the Netherlands. Journal of Environmental Quality, 31, 1875-1884. doi:10.2134/jeq2002.1875Cattle, J.A., McBratney, A.B., Minasny, B. 2002. Kriging method evaluation for assessing the spatial distribution of urban soil lead contamination. Journal of Environmental Quality, 31, 1576-1588. doi:10.2134/jeq2002.1576Delgado, J., Medina, J., Vega, M., Carretero, C., Pardo, R. 2009. Los minerales de la arcilla y el arsénico en los acuíferos de la Tierra de Pinares. Revista de la Sociedad Española de Mineralogía, 11, 75-76.D'Or, D., Demougeot-Renard, H., Garcia, M. 2008. Geostatistics for contaminated sites and soils: some pending questions. geoENV VI - Geosatistics for Environmental Applications, 15, 409-420. doi:10.1007/978-1-4020-6448-7_34ESRI. 2011. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.Falivene, O., Cabrera, L., Tolosana-Delgado, R., Sáez, A. 2010. Interpolation algorithm ranking using cross-validation and the role of smoothing effect. A coal zone example. Computers & Geociences, 36(4), 512-519.García-Sánchez, A., Alvarez-Ayuso, E. 2003. Arsenic in soils waters its relation to geology mining activities, (Salamanca Province, Spain). Journal of Geochemical Exploration 80, 69-79. doi:10.1016/S0375-6742(03)00183-3García-Sánchez, A., Moyano, A., Mayorga, P. 2005. High arsenic in groundwater of central Spain. Environmental Geology, 47(6), 847-854. doi:10.1007/s00254-004-1216-8Giménez-Forcada, E., Smedley, P.L. 2014. Geological factors controlling occurrence and distribution of arsenic in groundwaters from the southern margin of the Duero Basin, Spain. Environmental Geochemistry and Health, 36(6), 1029-1047. doi:10.1007/s10653-014-9599-2Gómez, J.J., Lillo, F.J., Sahún, B. 2006. Naturally occurring arsenic in groundwater identification of the geochemical sources in the Duero Cenozoic Basin, Spain. Environmental Geology, 50, 1151-1170. doi:10.1007/s00254-006-0288-zGómez Hernández, J.J. 1991. Geoestadística, para el análisis de riesgos: Una introducción a la geoestadística no paramétrica. Publicación Técnica 04/91, ENRESA.Goovaerts, P. 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York, USA.Goovaerts, P., AvRuskin, G., Meliker, J., Slotnick, M., Jacquez, G., Nriagu, J. 2005. Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resources Research, 41(7), W07013. doi:10.1029/2004WR003705Goovaerts, P. 2009. AUTO-IK: A 2D indicator kriging program for the automated non-parametric modeling of local uncertainty in earth sciences. Computers & Geoscienes, 35(6), 1255-1270. doi:10.1016/j.cageo.2008.08.014Guardiola-Albert, C., Pardo-Igúzquiza, E. 2011. Compositional Bayesian indicator estimation. Stochastic Environmental Research and Risk Assessment, 25(6), 835-849. doi:10.1007/s00477-011-0455-yIsaaks, E.H., Srivastava, R.M. 1989. An Introduction to Applied Geostatistics. Oxford University Press, New York, USA.Journel, A.G. 1983. Non-parametric estimation of spatial distributions. Mathematical Geology, 15(3), 445-468. doi:10.1007/BF01031292Journel, A., Kyriakidis, P.C., Mao, S. 2000. Correcting the smoothing effect of estimators: a spectral postprocessor. Mathematical Geology, 32(7), 787-813. doi:10.1023/A:1007544406740Juang, K.W., Chen, Y.S., Lee, D.Y. 2004. Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils. Environmental Pollution, 127(2), 229-238. doi:10.1016/j.envpol.2003.07.001Kitanidis, P.K. 1991. Orthonormal Residuals in Geostatistics: Model Criticism and Parameter Estimation. Mathematical Geology, 23(5), 741-758. doi:10.1007/BF02082534Lark, R.M., Ferguson, R.B. 2004. Mapping risk of soil nutrient deficiency or excess by disjunctive and indicator kriging. Geoderma, 118(1-2), 39-53. doi:10.1016/S0016-7061(03)00168-XMayorga, P., Moyano, A., Anawar, H.M., García-Sánchez, A. 2013. Temporal variation of arsenic and nitrate content in groundwater of the Duero River Basin (Spain). Physics and Chemistry of the Earth, 58-60, 22-27. doi:10.1016/j.pce.2013.04.001Olea, R., Pawlowsky, V. 1996. Compensating for estimation smoothing in kriging. Mathematical Geology, 28(4), 407-417. doi:10.1007/BF02083653Papritz, A., Dubois, J.P. 1999. Mapping heavy metals in soil by (non-)linear kriging: an empirical validation. In: geoENV II: Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics, vol. 10. Gomez-Hernandez, J. et al. (eds.), Kluwer Academic Publishing, Dordrecht, 429-440.Remy, N., Boucher, A., Wu, J. 2009. Applied Geostatistics with SGeMS: A User's Guide. Cambridge University Press. doi:10.1017/CBO9781139150019Rey-Moral, C., Gómez Ortíz, D., Giménez-Forcada, E., López-Bahut, M.T. 2016. Modelización gravimétrica y aeromagnética en el SE de la Cuenca del Duero (provincias de Ávila y Segovia). Factores geológicos que controlan la distribución de As (Arsénico) y otros ETGPT (Elementos Traza Geogénicos Potencialmente Tóxicos) en las aguas subterráneas. IX Congreso Geológico de España. Huelva 2016.Rivoirard, J. 1994. Introduction to Disjunctive Kriging and Non-Linear Geostatistics. Oxford Univ. Press, Oxford, UK.Rousseau, D. 1980. Contrôle des previsions, II, Vérification des prévisions de l'occurrence d'un phénomène : Application aux prévisions de précipitations, report. Étab. d'Études et Rech. de la Météorol./Météo France, Paris, France.Ryker, S.J. 2001. Mapping arsenic in ground water: A real need, but a hard problem. Geotimes, 46(11), 34-36.Sahún, B., Gómez Fernández, J.J., Lillo, J., Olmo, P.D. 2004. Arsénico en aguas subterráneas e interacción agua-roca: un ejemplo en la cuenca terciaria del Duero (Castilla y León, España). Revista de la Sociedad Geológica de España, 17(1-2), 137-155.Smedley, P.L., Kinniburg, D.G. 2002 A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517-568. doi:10.1016/S0883-2927(02)00018-5Tolosana-Delgado, R., Pawlowsky-Glahn, V., Egozcue, J.J., van der Boogaart, K.G. 2005. A compositional approach to indicator kriging. In: 2005 annual conference of the IAMG (Cheng, Q., Bonham-Carter, G.,eds.), Toronto, Canada: 651-656.Tolosana-Delgado, R., Pawlowsky-Glahn, V., Egozcue, J.J. 2008. Indicator kriging without order relation violations. Mathematical Geosciences, 40(3), 327-347. doi:10.1007/s11004-008-9146-8WHO. 2009. Chemicals Safety - Activity Report 2009. http://www.who.int/ipcs/about_ipcs/activity_report_2009.pdf. Last access: 24.10.2016

    Nonequilibrium phase transition in a model for the propagation of innovations among economic agents

    Get PDF
    We characterize the different morphological phases that occur in a simple one-dimensional model of propagation of innovations among economic agents [X.\ Guardiola, {\it et. al.}, Phys. Rev E {\bf 66}, 026121 (2002)]. We show that the model can be regarded as a nonequilibrium surface growth model. This allows us to demonstrate the presence of a continuous roughening transition between a flat (system size independent fluctuations) and a rough phase (system size dependent fluctuations). Finite-size scaling studies at the transition strongly suggest that the dynamic critical transition does not belong to directed percolation and, in fact, critical exponents do not seem to fit in any of the known universality classes of nonequilibrium phase transitions. Finally, we present an explanation for the occurrence of the roughening transition and argue that avalanche driven dynamics is responsible for the novel critical behavior

    Twenty-year advanced DInSAR analysis of severe land subsidence: The Alto Guadalentin Basin (Spain) case study

    Get PDF
    A twenty-year period of severe land subsidence evolution in the Alto Guadalentin Basin (southeast Spain) is monitored using multi-sensor SAR images, processed by advanced differential interferometric synthetic aperture radar (DInSAR) techniques. The SAR images used in this study consist of four datasets acquired by ERS-1/2, ENVISAT, ALOS and COSMO-SkyMed satellites between 1992 and 2012. The integration of ground surface displacement maps retrieved for different time periods allows us to quantify up to 2.50 m of cumulated displacements that occurred between 1992 and 2012 in the Alto Guadalentin Basin. DInSAR results were locally compared with global positioning system (GPS) data available for two continuous stations located in the study area, demonstrating the high consistency of local vertical motion measurements between the two different surveying techniques. An average absolute error of 4.6 +/- 4 mm for the ALOS data and of 4.8 +/- 3.5 mm for the COSMO-SkyMed data confirmed the reliability of the analysis. The spatial analysis of DInSAR ground surface displacement reveals a direct correlation with the thickness of the compressible alluvial deposits. Detected ground subsidence in the past 20 years is most likely a consequence of a 100-200 m groundwater level drop that has persisted since the 1970s due to the overexploitation of the Alto Guadalentin aquifer system. The negative gradient of the pore pressure is responsible for the extremely slow consolidation of a very thick (> 100 m) layer of fine-grained silt and clay layers with low vertical hydraulic permeability (approximately 50 mm/h) wherein the maximum settlement has still not been reached. (C) 2015 Published by Elsevier B.V

    Stakeholders’ Perspective on Groundwater Management in Four Water-Stressed Mediterranean Areas: Priorities and Challenges

    Get PDF
    Recent studies highlight the fragility of the Mediterranean basin against climate stresses and the difficulties of managing the sustainable development of groundwater resources. In this work, the main issues related to groundwater management have been identified from the stake-holder’s perspective in the following four representative water-stressed Mediterranean areas: the coastal aquifer of Comacchio (Italy), the Alto Guadalentín aquifer (Spain), the alluvial aquifer of the Gediz River basin (Turkey), and the Azraq aquifer (Azraq Wetland Reserve, Jordan). This has been achieved by designing a methodology to involve and engage a representative set of stakeholders, including a questionnaire to learn their point of view concerning the current management of aquifer systems and their experience with the already available tools for groundwater resource manage-ment, such as monitoring networks and numerical models. The outcome of the survey has allowed us to identify both particular and common challenges among the four study sites and among the various groups of stakeholders. This information provides valuable insights to improve the transfer of scientific knowledge from the research centers to the authorities managing the groundwater resources and it will help to plan more effective research activities on aquifer management. The proposed methodology could be applied in other aquifers facing similar problems

    Towards 3D databases and harmonized 3D models at IGME-CSIC

    Get PDF
    IGME-CSIC has a highly relevant geological and geophysical database that includes a continuous digital geological cartography at 1:50000; 1:200000 and 1:1000000 scales and a fair amount of geophysical data: gravity, magnetic, well-logs in tiff and LAS format, seismic lines in tiff and SEG-Y format, borehole and petrophysical data, together with other geophysical and geological studies. Since the 2004, an important effort has been done to undertake 3D geological and geophysical modelling ranging from local studies (mineral exploration or CO2 storage sites) to regional geology for a better understanding of the subsurface structure and its geodynamic evolution as a base for other studies on natural hazards or mineral resources. These studies were ¿stand alone¿ and now IGME is designing a new strategy. It includes the available data and models harmonization (stratigraphy sequences, structural interpretations, faults distribution, seismic velocity models, spatial distribution of physical properties such as density and magnetic susceptibility, workflows, methodologies, evaluation of uncertainties, visualization, etc.) to comply with the FAIR (Findable, Accessible, Interoperable and Reusable) data standardization. In this way, the new 3D models will be easily integrated and available from the databases. This strategy includes collaboration with the Bureau de Recherches Géologiques et Minières of France (BRGM) and Laboratório Nacional de Energia e Geologia of Portugal (LNEG) in order to harmonize the Spanish geological data and models with their neighbours across national borders. The first step is being done in the framework of GeoERA projects. Plain-language Summary IGME-CSIC owns a large database that includes a highly valuable geological and geophysical data and geophysical studies containing the interpretation of some of the data of Spain (onshore and offshore) Since 2004 the authors of this work have been working in 3D geological and geophysical modelling that includes local (mineral exploration or CO2 storage sites) and regional studies. The goal is to improve our understanding of the subsurface structures and processes as a base for deepening our knowledge in how the natural hazards occur, how to improve the exploration for mineral resources, etc. These studies were made ad hoc within different projects and now IGME-CSIC is designing a workflow to harmonize these models in order to comply with the FAIR (Findable, Accessible, Interoperable and Reusable) data standardization so the models will be available to being used beyond the initial objectives that generated their creation. This strategy includes collaboration with other European institutions like the Bureau de Recherches Géologiques et Minières of France (BRGM) and Laboratório Nacional de Energia e Geologia of Portugal (LNEG) in order to harmonize the models across national borders. The first step is already being done in the framework of the GeoERA projects

    Competitive Targeted Marketing

    Full text link
    In this paper, we consider two firms diffusing incompatible technologies and their decision of consumer targeting. The technology adoption is made in two steps. First, once the firms sell their products to their respective targeted consumer, the technology is diffused successively by word-of-mouth communication from the initial consumer to other consumers linked along the network. Then, in the second step, each consumer imitates the technology the neighbors use which fares better, and through this process of imitation, the technology distribution keeps evolving until it reaches the long-run steady state. We demonstrate that the early entrant chooses the minmax location when firms are myopic in the sense that they do not take the imitation possibility into account. If firms consider the possibility of imitation, the best target will tend towards a hub, although the minmax principle in general keeps valid in the sense that it should be the minmax location after considering imitation

    Application of multi-sensor advanced DInSAR analysis to severe land subsidence recognition: Alto Guadalentín Basin (Spain)

    Get PDF
    Multi-sensor advanced DInSAR analyses have been performed and compared with two GPS station measurements, in order to evaluate the land subsidence evolution in a 20-year period, in the Alto Guadalentín Basin where the highest rate of man-induced subsidence (> 10 cm yr−1) of Europe had been detected. The control mechanisms have been examined comparing the advanced DInSAR data with conditioning and triggering factors (i.e. isobaths of Plio-Quaternary deposits, soft soil thickness and piezometric level)

    Anti-tumour necrosis factor discontinuation in inflammatory bowel disease patients in remission: study protocol of a prospective, multicentre, randomized clinical trial

    Get PDF
    Background: Patients with inflammatory bowel disease who achieve remission with anti-tumour necrosis factor (anti-TNF) drugs may have treatment withdrawn due to safety concerns and cost considerations, but there is a lack of prospective, controlled data investigating this strategy. The primary study aim is to compare the rates of clinical remission at 1?year in patients who discontinue anti-TNF treatment versus those who continue treatment. Methods: This is an ongoing, prospective, double-blind, multicentre, randomized, placebo-controlled study in patients with Crohn?s disease or ulcerative colitis who have achieved clinical remission for ?6?months with an anti-TNF treatment and an immunosuppressant. Patients are being randomized 1:1 to discontinue anti-TNF therapy or continue therapy. Randomization stratifies patients by the type of inflammatory bowel disease and drug (infliximab versus adalimumab) at study inclusion. The primary endpoint of the study is sustained clinical remission at 1?year. Other endpoints include endoscopic and radiological activity, patient-reported outcomes (quality of life, work productivity), safety and predictive factors for relapse. The required sample size is 194 patients. In addition to the main analysis (discontinuation versus continuation), subanalyses will include stratification by type of inflammatory bowel disease, phenotype and previous treatment. Biological samples will be obtained to identify factors predictive of relapse after treatment withdrawal. Results: Enrolment began in 2016, and the study is expected to end in 2020. Conclusions: This study will contribute prospective, controlled data on outcomes and predictors of relapse in patients with inflammatory bowel disease after withdrawal of anti-TNF agents following achievement of clinical remission. Clinical trial reference number: EudraCT 2015-001410-1
    corecore