70 research outputs found

    A toy model of polymer stretching

    Full text link
    We present an extremely simplified model of multiple-domains polymer stretching in an atomic force microscopy experiment. We portray each module as a binary set of contacts and decompose the system energy into a harmonic term (the cantilever) and long-range interactions terms inside each domain. Exact equilibrium computations and Monte Carlo simulations qualitatively reproduce the experimental saw-tooth pattern of force-extension profiles, corresponding (in our model) to first-order phase transitions. We study the influence of the coupling induced by the cantilever and the pulling speed on the relative heights of the force peaks. The results suggest that the increasing height of the critical force for subsequent unfolding events is an out-of-equilibrium effect due to a finite pulling speed. The dependence of the average unfolding force on the pulling speed is shown to reproduce the experimental logarithmic law.Comment: New revised versio

    Computational analysis of folding and mutation properties of C5 domain from Myosin binding protein C

    Get PDF
    Thermal folding Molecular Dynamics simulations of the domain C5 from Myosin Binding Protein C were performed using a native-centric model to study the role of three mutations related to Familial Hypertrophic Cardiomyopathy. Mutation of Asn755 causes the largest shift of the folding temperature, and the residue is located in the CFGA' beta-sheet featuring the highest Phi-values. The mutation thus appears to reduce the thermodynamic stability in agreement with experimental data. The mutations on Arg654 and Arg668, conversely, cause a little change in the folding temperature and they reside in the low Phi-value BDE beta-sheet, so that their pathologic role cannot be related to impairment of the folding process but possibly to the binding with target molecules. As the typical signature of Domain C5 is the presence of a longer and destabilizing CD-loop with respect to the other Ig-like domains we completed the work with a bioinformatic analysis of this loop showing a high density of negative charge and low hydrophobicity. This indicates the CD-loop as a natively unfolded sequence with a likely coupling between folding and ligand binding.Comment: RevTeX, 10 pages, 9 eps-figure

    Opening Pathways of the DNA Clamps Proliferating Cell Nuclear Antigen and Rad9-Rad1-Hus1

    Get PDF
    Proliferating cell nuclear antigen and the checkpoint clamp Rad9-Rad1-Hus1 topologically encircle DNA and act as mobile platforms in the recruitment of proteins involved in DNA damage response and cell cycle regulation. To fulfill these vital cellular functions, both clamps need to be opened and loaded onto DNA by a clamp loader complex—a process, which involves disruption of the DNA clamp’s subunit interfaces. Herein, we compare the relative stabilities of the interfaces using the molecular mechanics Poisson−Boltzmann solvent accessible surface method. We identify the Rad9-Rad1 interface as the weakest and, therefore, most likely to open during clamp loading. We also delineate the dominant interface disruption pathways under external forces in multiple-trajectory steered molecular dynamics runs. We show that, similar to the case of protein folding, clamp opening may not proceed through a single interface breakdown mechanism. Instead, we identify an ensemble of opening pathways, some more prevalent than others, characterized by specific groups of contacts that differentially stabilize the regions of the interface and determine the spatial and temporal patterns of breakdown. In Rad9-Rad1-Hus1, the Rad9-Rad1 and Rad9-Hus1 interfaces share the same dominant unzipping pathway, whereas the Hus1-Rad1 interface is disrupted concertedly with no preferred directionality

    Integrated Approach Including Docking, MD Simulations, and Network Analysis Highlights the Action Mechanism of the Cardiac hERG Activator RPR260243

    Get PDF
    hERG is a voltage-gatedpotassium channel involved inthe heartcontraction whose defections are associated with the cardiac arrhythmiaLong QT Syndrome type 2. The activator RPR260243 (RPR) representsa possible candidate to pharmacologically treat LQTS2 because it enhancesthe opening of the channel. However, the molecular detail of its actionmechanism remains quite elusive. Here, we address the problem usinga combination of docking, molecular dynamics simulations, and networkanalysis. We show that the drug preferably binds at the interfacebetween the voltage sensor and the pore, enhancing the canonical activationpath and determining a whole-structure rearrangement of the channelthat slightly impairs inactivation

    Sodium binding sites and permeation mechanism in the NaChBac channel:a molecular dynamics study

    Get PDF
    NaChBac was the first discovered bacterial sodium voltage-dependent channel, yet computational studies are still limited due to the lack of a crystal structure. In this work, a pore-only construct built using the NavMs template was investigated using unbiased molecular dynamics and metadynamics. The potential of mean force (PMF) from the unbiased run features four minima, three of which correspond to sites IN, CEN, and HFS discovered in NavAb. During the run, the selectivity filter (SF) is spontaneously occupied by two ions, and frequent access of a third one is often observed. In the innermost sites IN and CEN, Na+ is fully hydrated by six water molecules and occupies an on-axis position. In site HFS sodium interacts with a glutamate and a serine from the same subunit and is forced to adopt an off-axis placement. Metadynamics simulations biasing one and two ions show an energy barrier in the SF that prevents single-ion permeation. An analysis of the permeation mechanism was performed both computing minimum energy paths in the axial–axial PMF and through a combination of Markov state modeling and transition path theory. Both approaches reveal a knock-on mechanism involving at least two but possibly three ions. The currents predicted from the unbiased simulation using linear response theory are in excellent agreement with single-channel patch-clamp recording

    Noncanonical electromechanical coupling paths in cardiac hERG potassium channel

    Get PDF
    Voltage-gated potassium channels are involved in many physiological processes such as nerve impulse transmission, the heartbeat, and muscle contraction. However, for many of them the molecular determinants of the gating mechanism remain elusive. Here, using a combination of theoretical and experimental approaches, we address this problem focusing on the cardiac hERG potassium channel. Network analysis of molecular dynamics trajectories reveals the presence of a kinematic chain of residues that couples the voltage sensor domain to the pore domain and involves the S4/S1 and S1/S5 subunit interfaces. Mutagenesis experiments confirm the role of these residues and interfaces in the activation and inactivation mechanisms. Our findings demonstrate the presence of an electromechanical transduction path crucial for the non-domain-swapped hERG channel gating that resembles the noncanonical path identified in domain-swapped K+ channels

    Changes in ion selectivity following asymmetrical addition of charge to the selectivity filter of bacterial sodium channels

    Get PDF
    Abstract: Voltage-gated sodium channels (NaVs) play fundamental roles in eukaryotes but their exceptional size hinders their structural resolution. Bacterial NaVs are simplified homologues of their eukaryotic counterparts but their use as models of eukaryotic Na+ channels is limited by their homotetrameric structure at odds with the asymmetric Selectivity Filter (SF) of eukaryotic NaVs. This work aims at mimicking the SF of eukaryotic NaVs by engineering radial asymmetry into the SF of bacterial channels. This goal was pursued with two approaches: co-expression of different monomers of the NaChBac bacterial channel to induce the random assembly of heterotetramers, and the concatenation of four bacterial monomers to form a concatemer that can be targeted by site-specific mutagenesis. Patch-clamp measurements and Molecular Dynamics simulations showed that an additional gating charge in the SF leads to a significant increase of Na+ and a modest increase in Ca2+ conductance in the NavMs concatemer in agreement with the behavior of the population of random heterotetramers with the highest proportion of channels with charge −5e. We thus showed that charge, despite being important, is not the only determinant of conduction and selectivity and we created new tools extending the use of bacterial channels as models of eukaryotic counterparts

    Design of a Novel Long-Reach Cable-Driven Hyper-Redundant Snake-like Manipulator for Inspection and Maintenance

    Get PDF
    Robotic inspection and maintenance are gaining importance due to the number of different scenarios in which robots can operate. The use of robotic systems to accomplish such tasks has deep implications in terms of safety for human workers and can significantly extend the life of infrastructures and industrial facilities. In this context, long-reach cable-driven hyper-redundant robots can be employed to inspect areas that are difficult to reach and hazardous environments such as tanks and vessels. This paper presents a novel long-reach cable-driven hyper-redundant robot called SLIM (Snake-Like manipulator for Inspection and Maintenance). SLIM consists of a robotic arm, a pan and tilt mechanism as end-effector, and an actuation box that can rotate and around which the arm can wrap. The robot has a total of 15 degrees of freedom and, therefore, for the task of positioning the tool centre point in a bi-dimensional Cartesian space with a specific attitude, it has 10 degrees of redundancy. The robot is designed to operate in harsh environments and high temperatures and can deploy itself up to about 4.8 m. This paper presents the requirements that drove the design of the robot, the main aspects of the mechanical and electronic systems, the control strategy, and the results of preliminary experimental tests performed with a physical prototype to evaluate the robot performances

    From the potential of the mean force to a quasiparticle’s effective potential in narrow ion channels

    Get PDF
    We consider the selective permeation of ions through narrow water-filled channels in the presence of strong interaction between the ions. These interactions lead to highly correlated ionic motion, which can conveniently be described via the concept of a quasiparticle. Here, we connect the quasiparticle’s effective potential and the multi-ion potential of the mean force, found through molecular dynamics simulations, and we validate the method on an analytical toy model of the KcsA channel. Possible future applications of the method to the connection between molecular dynamical calculations and the experimentally measured current-voltage and current-concentration characteristics of the channel are discussed
    • 

    corecore