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ABSTRACT

Proliferating cell nuclear antigen and the checkpoint
clamp Rad9-Rad1-Hus1 topologically encircle DNA
and act as mobile platforms in the recruitment of
proteins involved in DNA damage response and
cell cycle regulation. To fulfill these vital cellular
functions, both clamps need to be opened and
loaded onto DNA by a clamp loader complex—a
process, which involves disruption of the DNA
clamp’s subunit interfaces. Herein, we compare
the relative stabilities of the interfaces using the
molecular mechanics Poisson�Boltzmann solvent
accessible surface method. We identify the Rad9-
Rad1 interface as the weakest and, therefore, most
likely to open during clamp loading. We also delin-
eate the dominant interface disruption pathways
under external forces in multiple-trajectory steered
molecular dynamics runs. We show that, similar to
the case of protein folding, clamp opening may not
proceed through a single interface breakdown
mechanism. Instead, we identify an ensemble of
opening pathways, some more prevalent than
others, characterized by specific groups of
contacts that differentially stabilize the regions of
the interface and determine the spatial and
temporal patterns of breakdown. In Rad9-Rad1-
Hus1, the Rad9-Rad1 and Rad9-Hus1 interfaces
share the same dominant unzipping pathway,
whereas the Hus1-Rad1 interface is disrupted
concertedly with no preferred directionality.

INTRODUCTION

Genome duplication and maintenance are essential for all
life, and the dynamic molecular machinery responsible for
these vital biological functions is the replisome (1).
Proliferating Cell Nuclear Antigen (PCNA) (2–4) and a
related checkpoint protein, Rad9-Rad1-Hus1 (9-1-1) (5),

are DNA clamps, which act as platforms for the assembly
of core replisomal components on DNA (6). In this
capacity, DNA clamps are essential in cellular activities
ranging from DNA replication, repair of DNA damage,
chromatin structure maintenance, chromosome segrega-
tion, cell-cycle progression and apoptosis (2,6–12).
PCNA is a recognized master coordinator of multiple
pathways controlling replication and DNA damage
response. The clamp has a toroidal shape that wraps
around DNA and topologically links the replicating
DNA polymerase to its substrate. During lagging strand
DNA synthesis, PCNA organizes three core replication
proteins—DNA polymerase, Flap endonuclease 1 and
DNA ligase I (13,14). Similarly, the checkpoint clamp
9-1-1 is a crucial constituent of complexes responsible
for checkpoint signaling and base excision repair (BER).
Although PCNA features three identical subunits, 9-1-1
(15–17) is heterotrimeric (Figure 1) reflecting the distinct
roles of PCNA and 9-1-1 in DNA processing (18). Unlike
PCNA, 9-1-1 does not associate with replicative polymer-
ases but recruits checkpoint effector kinases to sites of
DNA damage. 9-1-1 also stabilizes stalled replication
forks (9,19,20) and stimulates BER enzymes (including
Flap endonuclease 1 and DNA ligase I), thus linking
BER activities to checkpoint coordination (21–24).
PCNA and 9-1-1 are composed of three subunits

forming closed rings encircling DNA. Each subunit
includes two wedge-shaped domains connected by a long
inter-domain connector loop (IDCL) (3,4). Most partner
proteins associate with the clamps through the IDCL
using a consensus sequence called PIP-Box. The clamp
subunits delimit an inner cavity whose walls are rich in
positively charged residues needed for contacting DNA.
The fact that PCNA and 9-1-1 form stable trimers implies
an activated mechanism for loading onto DNA (25–28). A
clamp-loader (AAA+ ATPase) opens and subsequently
re-closes the clamps around DNA (29). Specifically,
PCNA is loaded onto primer-template DNA by the penta-
meric replication factor C (RFC) complex (28–33). 9-1-1 is
loaded by a variant clamp loader wherein the large Rfc1
subunit has been replaced by Rad17 (8,34) The clamp-
loading mechanism is conserved in the three domains of
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life and involves opening of the pre-formed rings along a
single subunit interface. As all three 9-1-1 interfaces are
distinct, naturally, a question arises whether one interface
is preferentially opened during clamp loading.
Furthermore, as the protein machinery responsible for
clamp loading is essentially the same for PCNA and 9-1-
1 (besides the replacement of Rfc1 by Rad17), this
prompts two important questions: (i) does subunit inter-
face stability play a role in determining which interface is
opened and (ii) is there an intrinsic difference in the energy
required to open and load PCNA versus 9-1-1?
For the heterotrimeric 9-1-1 clamp, the question of

which interface opens to allow a pre-formed ring to be
loaded onto DNA junctions is still unresolved. There
have been two competing proposals. First, Dore et al.
argued that the Rad9–Rad1 interface serves as an
opening gate during clamp loading. In their 9-1-1 struc-
ture (15) (PDB id: 3G65), the Rad9–Rad1 interface was
found to be most polar and had the smallest buried
surface area (BSA) (1100 Å2). By contrast, Sohn and
Cho (16) independently solved the 9-1-1 structure (PDB
id: 3A1J) and argued that the Hus1–Rad1 interface was
most likely to open due to its close structural resemblance

to the human PCNA interface. Finally, Xu et al. (17) pub-
lished a third 9-1-1 crystal structure (PDB id: 3GGR) and
proposed association between Rad1 and human Rad17 in
the complex of 9-1-1 with the clamp loader. Owing to the
chiral arrangement of the 9-1-1 subunits (Rad9, Rad1 and
Hus1 in anticlockwise order viewed from the top), the
Rad9 subunit would then be located beneath the Rfc5
subunit of the clamp loader. This would position the
Rad9-Rad1 interface at the gap between Rfc5 and
Rad17. Such positioning also implied the Rad9-Rad1
interface could be the gateway to open the checkpoint
clamp.

Despite the availability of three independently
determined 9-1-1 structures, this conundrum cannot be
easily resolved for several reasons: (i) BSA is an imperfect
indicator of interface stability; (ii) specific residue contacts
at the interfaces differ among the three available struc-
tures; (iii) there are unresolved residues close to the inter-
faces in two of the three experimental structures (15–17).
In this contribution, we analyze the DNA clamp interfaces
to determine the interface serving as the opening gateway
in 9-1-1. Specifically, we apply the MM/PBSA (MM/
GBSA) method (35,36) in the AMBER package (37,38)
to compute binding energies for the subunit interfaces in
PCNA and 9-1-1, providing an unbiased comparison of
relative interface stabilities. Furthermore, pairwise decom-
position of the MM/GBSA binding energies allowed us to
delineate the significant interactions contributing to the
stability of each interface. Finally, by analyzing series of
multiple-trajectory steered molecular dynamics (SMD)
runs (pulling runs), we characterized the mechanical
properties of the DNA clamp interfaces and their break-
down mechanisms under external forces.

MATERIALS AND METHODS

We adopted a three-step computational strategy to
evaluate the clamp interfaces. First, the molecular mech-
anics Poisson�Boltzmann (Generalized Born) solvent ac-
cessible surface area (MM/PBSA or MM/GBSA) method
was applied to calculate binding energies and compare the
relative stabilities of the four subunit interfaces of human
PCNA and 9-1-1. Second, the computed binding energies
were decomposed to reveal aggregate per residue contri-
butions to interface stabilization. We also carried out
pairwise MM/GBSA decomposition to construct a
matrix of pair interaction energies for residues forming
each interface. Third, we performed multiple-trajectory
SMD simulations to monitor the pattern of breakdown
for all energetically significant residue contacts identified
in the MM/GBSA pairwise decomposition. Description
for each of the three stages in our modeling protocol is
given later in the text.

Systems setup and molecular dynamics

The crystal structures of PCNA (4) (PDB ID: 1VYM) and
Rad9-Rad1-Hus1 (15–17) (PDB ID: 3A1J, 3GGR, 3G65)
were obtained from the Protein Data Bank. Molecular
dynamics simulations before MM/PBSA analysis were
performed using the intact trimeric clamps. Unresolved
residues in the 3G65 and 3A1J structures were fixed

Figure 1. Common toroidal architecture of the DNA clamps PCNA
and 9-1-1. (A) Structure of PCNA with the equivalent subunits
shown in red, blue and green. (B) Structure of the checkpoint clamp
with Rad9 shown in red, Rad1 in green and Hus1 in blue. (C) Surface
electrostatics of the PCNA interface. (D) Surface electrostatics of the
Hus1-Rad1 interface. (E) Surface electrostatics of the Rad9-Hus1 inter-
face. (F) Surface electrostatics of the Rad9-Rad1 interface. Electrostatic
potential is mapped onto the molecular surface for each interface and
color-coded from red (negative) to blue (positive).

2 Nucleic Acids Research, 2013

 at G
eorgia State U

niversity on Septem
ber 23, 2016

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

Since 
since 
;
'
a
e
Due 
,
buried surface area (
)
steered molecular dynamics
below
prior to
http://nar.oxfordjournals.org/


based on the 3GGR structure. For the subsequent
MM-PBSA calculations, we removed one clamp subunit
to ensure only one interface (between the remaining two
subunits) was evaluated. To limit computational expense,
we carried out all SMD runs on reduced models, wherein
we retained only the N-terminal domain of the first
subunit and the C-terminal domain of the neighboring
subunit. This approach is justified by the outcome of the
MM/GBSA analysis, which showed no substantial contri-
butions to the binding energies from residues outside the
two adjacent domains defining each interface. The XLeap
module of AMBER 9 (37,38) was used to add hydrogen
atoms. All ionizable side chains were assigned to their
ionization states at pH 7.0 using the WHATIF server
(43). Each system was solvated with TIP3P water mol-
ecules (44) leaving a minimum distance of 10.0 Å from
the protein surface to the edge of the simulation box.
Counter ions were added to achieve charge neutralization,
and additional 100mM NaCl concentration was
introduced to mimic physiological conditions.

The systems were minimized for 5000 steps with fixed
backbone atoms followed by 5000 steps of minimization
with harmonic restraints on the protein backbone atoms
(k=25kcal/mol) to remove unfavorable contacts. All
systems were then gradually heated to 300K over 200 ps
in the NVT ensemble while keeping the protein backbone
constrained. The equilibration was continued for another
1.0 ns in the NPT ensemble, and the harmonic restraints
were gradually released.

Production runs were carried out in the isothermal
isobaric ensemble (1 atm and 300K) for 20 ns for the
intact clamp systems (for MM/PBSA). Long-range elec-
trostatic interactions were evaluated with the smooth
particle mesh Ewald algorithm (45). For the short-range
non-bonded interactions, we used a cutoff of 10 Å with a
switching function at 8.5 Å. The integration time step was
2 fs, and the bonds between hydrogen and heavy atoms
were fixed to eliminate the most rapid oscillatory motions.
The r-RESPA multiple time step method (46) was adopted
with a 2 fs time step for bonded, 2 fs for short-range non-
bonded interactions and 4 fs for long-range electrostatic
interactions. All simulations were performed using the
NAMD 2.7 code (47,48) with the AMBER Parm99SB
parameter set (49) containing the force field for nucleic
acids and proteins. Data were analyzed using the
PTRAJ utility in AMBER (38) and custom VMD TCL
scripts (50).

Binding energy calculation

To calculate binding energies for all four clamp interfaces,
we used the molecular mechanics Poisson�Boltzmann
solvent accessible surface area (MM/PBSA) method
(35,36). For the purposes of MM/PBSA analysis, we
sampled frames at 4 ps intervals from the last 10 ns of
the MD trajectories (the first 10 ns were discarded as
equilibration). In total, 2500 frames were used for
averaging. Free energy of binding can be computed as
follows:

�Gb ¼ �EMM+�Gsol � T�S

where �EMM represents gas-phase molecular mechanics
binding energy (van der Waals and electrostatics); �Gsol

is the change in solvation free energy, and �S is the
gas-phase entropy change on binding. The electrostatic
solvation energy contribution to �Gsol can be estimated
using the finite difference Poisson�Boltzmann (PB)
method. A grid size of 0.5 Å was used in the PB calcula-
tion, and the dielectric constants for protein and water
were set to 1.0 and 78.0, respectively. The non-polar con-
tribution to �Gsol was estimated by the solvent-accessible
surface area according to equation:

�Gnonpolar ¼ �A+b

The solvation parameters g and b are set to be
0.0072 kcalmol�1 Å�2 and 0 kcalmol�1, respectively. The
surface area A was calculated using MolSurf in AMBER 9
(38). The probe radius of the solvent was set to 1.4 Å. The
optimized set of atomic radii in AMBER 9 was used, and
the atomic charges of the protein were taken from the
ff99SB force field. The entropy contribution was not
included, and, therefore, the computed values for the
binding energies should be considered only relative to
one another. Computed relative binding energies represent
an appropriate measure of interface stability under the
assumption that the gas-phase entropy terms are similar
for the PCNA and 9-1-1 interfaces. The similar extent and
secondary structure of the four clamp interfaces justifies
such an approach.
Finally, we carried out two types of binding energy de-

composition calculations. First, aggregate contributions
of individual residues toward interface stability were
evaluated (1D decomposition). Second, a pairwise (2D)
decomposition was carried out to pinpoint residue pairs
contributing significantly (above �1.0 kcal/mol for PCNA
and Hus1-Rad1; �2.0 kcal/mol for Rad9-Hus1 and Rad9-
Rad1) toward the interface binding energy. To reduce the
computational expense of the pairwise decomposition, we
used model truncation analogous to the one used in SMD.
The MM/GBSA decomposition follows an established
method to estimate the contributions of residues from
each of the two subunits to the total binding energy by
means of component analysis (41). PTRAJ module of
AMBER TOOLS 12 and VMD (50) were used for the
analysis of trajectories and structural visualization.

SMD

To examine the mechanical properties of the subunit inter-
faces in PCNA and 9-1-1 and establish interface disrup-
tion mechanisms under external forces we relied on the
SMD method (51). To initiate the SMD runs, we
selected snapshots from preliminary 10 ns unbiased simu-
lations of PCNA and 9-1-1 (3A1J) at equal intervals along
the trajectories. These statistically uncorrelated configur-
ations were used to initiate constant velocity SMD. In
each interface, we have applied constraints to the
b-strand of the N-terminal domain while applying a
harmonic force k=15kcalmol�1 Å�2 to the center of
mass of the other strand. The pulling direction was
along the line connecting the centers of mass of the two
domains. The constant pulling velocity was 1 Å ns�1, and
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the pulling run had a total duration of 12 ns so as to
achieve an opening of 12 Å of the interface. During the
pulling trajectories, 1200 structures were sampled at inter-
vals of 10 ps for analysis. In total, the SMD simulation
time exceeded 1.4 ms necessitating the use of extensive
supercomputing resources. Thus, the project required >1
million CPU hours at two supercomputing facilities
(NICS Kraken and NERSC Hopper II supercomputers).
Analysis of the SMD runs was carried out by following

the time evolution of the contacts identified as significant
contributors to binding in the pairwise (2D) MM/GBSA
decomposition (41). The contacts were classified as
hydrogen bonds, salt-bridges, hydrophobic interactions
and suitable cutoffs applied to determine the presence of
the contact in the trajectory frames. For each contact
detected during the pulling trajectory, the time of last oc-
currence (allowing for the possibility of contact breaking
and reforming) was used to identify the breakdown time.
The interface opening mechanism could then be followed
on a contact map wherein the color-coding scheme
signified groups of contacts cleaved within the same time
interval.

RESULTS AND DISCUSSION

Rad9-Rad1 interface requires least amount of energy to
open

To understand the structural and energetic basis for inter-
face stability in PCNA and 9-1-1, we analyzed all four
subunit interfaces (PCNA-PCNA, Rad9-Rad1, Rad9-
Hus1 and Hus1-Rad1) through MD simulations along
with the application of the MM/PBSA method (35,36).
We use complete and fully relaxed models of the
trimeric sliding clamps (PDB id: 3GGR, 3A1J and
3G65) (15–17) embedded in an aqueous solvent environ-
ment. Subunit interface binding energies were averaged
over 2500 independent conformations. Various compo-
nents of the subunit interaction energy �Gb were
evaluated for all three available 9-1-1 X-ray structures
(Table 1, Supplementary Tables S1 and S2). When MM/
PBSA is applied to extended interfaces, it is challenging to
accurately assess the gas-phase entropic contribution.

Therefore, quantitative comparison of the interfaces
involved only the enthalpic contribution, and the values
in Table 1 and Supplementary Tables S1 and S2 represent
binding energies rather than free energies. As expected,
due to lack of entropy-enthalpy compensation, the
absolute binding energies are overestimated.
Nonetheless, previous applications of MM/PBSA to
protein interfaces have shown the usefulness of comparing
the relative stabilities of binding epitopes and identifying
binding hotspots based on energy decomposition (39,40).

From the data in Table 1 (also Supplementary Tables
S1 and S2), we immediately conclude that the 9-1-1 inter-
faces differ substantially in stability. For the most
complete structure (3GGR), the computed binding
energies �Gb establish the following order of stability:
Rad9-Hus1>Hus1-Rad1>Rad9-Rad1&PCNA-PCNA
(ratios of �Gb of 1.71:1.39:1.10:1.0). This ordering is
maintained regardless of which X-ray structure was used
in constructing the model (e.g. for 3G65 the �Gb ratios
are 1.86:1.49:1.16:1.0). The only outlier value is the Rad9-
Hus1 binding energy in the 3A1J model. Missing residues
at this interface were added by homology modeling (using
3GGR as template) likely leading to a marginally lower
�Gb. Comparison among the independently set-up 3G65,
3A1J and 3GGR models reveal that the binding energy
ratio �Gb (Rad9-Rad1)/�Gb (PCNA) is remarkably con-
sistent, irrespective of the initial structural model (ratio of
1.16, 1.12 and 1.10, respectively). The Rad9-Rad1 inter-
face is the weakest and, thus, a clear choice to be the
gateway for opening the checkpoint clamp. Furthermore,
the binding energy of Rad9-Rad1 is practically indistin-
guishable from the binding energy of the PCNA-PCNA
interface. Therefore, the energetic requirement for the
Rad17-RFC2–5 complex to open 9-1-1 is essentially
same as the requirement for RFC to open the PCNA
ring. From an evolutionary standpoint, this outcome
implies 9-1-1 and PCNA may have been subject to evolu-
tionary pressure to optimize the overall stability of one
subunit interface (Rad9-Rad1 or PCNA-PCNA) to
match the requirements of the clamp loading machinery.

Despite the almost perfect match in overall binding
energies, the stability of Rad9-Rad1 and PCNA-PCNA
interfaces is achieved by different means. The PCNA

Table 1. Binding energy analysis (kcal mol�1) for the DNA clamp interfaces in PCNA and 9-1-1 (3GGR model)

Contribution 3GGR

PCNA/PCNA Rad9/Hus1 Hus1/Rad1 Rad9/Rad1

�Eele 866.04 (46.68) �479.45 (88.28) �38.87 (37.04) �584.25 (53.97)
�Evdw �80.65 (5.38) �98.14 (7.77) �92.49 (6.27) �80.12 (6.12)
�Gnon-polar �11.68 (0.42) �16.58 (0.70) �12.62 (0.55) �12.84 (0.46)
�Gpolar �827.27 (46.05) 502.33 (84.81) 69.78 (34.50) 618.16 (50.82)
�Gsol

a
�838.95 (45.83) 485.75 (84.34) 57.17 (34.42) 605.31 (50.74)

�Gele
b 38.77 (10.49) 22.88 (10.65) 30.91 (7.73) 33.90 (10.94)

�Gb �53.56 (8.91) �91.84 (9.08) �74.19 (8.16) �59.06 (8.68)
�Gb Ratio 1.00 1.71 1.39 1.10

BSA (Å2) 1555 2117 1629 1645

aPolar/non-polar (�Gsol=�Gpolar+�Gnon-polar) contributions to �Gb.
bElectrostatic (�Gele=�Eele+�Gpolar) contributions to �Gb. Calculation of �Gb does not explicitly consider entropy contributions. Standard
deviations are shown in parentheses. Averaged BSA for the interfaces are given units of Å2.
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interface is largely flat and hydrophobic and does not
display electrostatic complementarity between the
opposing binding epitopes (Figure 1C). By contrast, the
Rad9-Rad1 interface features more polar contacts and a
shorter hydrophobic patch between the two antiparallel
b-strands S9-S13 (16) (Figure 3B). The binding surfaces
from the Rad9 and Rad1 subunits display high electro-
static complementarity (Figure 1F) as reflected in the
computed gas-phase electrostatic energy. �Eele is favor-
able for the Rad9-Rad1 interface but unfavorable for
the PCNA interface (Table 1). By contrast, the electro-
static solvation energy (�Gpolar) disfavors Rad9-Rad1
binding, whereas it favors PCNA interface formation.
Rad9-Hus1 and Hus1-Rad1 also display favorable �Eele

due to electrostatic complementarity between the 9-1-1
subunits (Figure 1D–F)—a feature, which is absent in
the PCNA interface.

Finally, it is notable that the computed BSA values for
the interfaces averaged over the simulation trajectories
(Table 1, Supplementary Tables S1 and S2) do not correl-
ate well with the computed binding energies. Using only
�Gnon-polar (or alternatively BSA) to evaluate the 9-1-1
interfaces would suggest Hus1-Rad1 to be marginally
less stable than Rad9-Rad1, inverting the order of stability
established through the total binding energies �Gb.
However, interface formation is driven by both polar
(�Gpolar and �Eele) and non-polar interactions
(�Gnon-polar and �Evdw), which in the balance determine
�Gb. As BSA accounts only for the �Gnon-polar contribu-
tion, it is a poor gauge of relative interface stability.

Structural determinants of PCNA and 9-1-1 interface
stability

To delineate the structural features that affect 9-1-1 inter-
face stabilities, we decomposed the total binding energies
�Gb into aggregate per residue contributions (1D
decomposition) (41). All residues contributing substan-
tially toward interface stabilization/destabilization above
a ±1.5 kcalmol�1 threshold are shown in Figures 2 and 3.
Residue contributions are also color mapped onto the
structure of the respective interfaces. First, we note that
all interfaces in 9-1-1 and PCNA are stabilized entirely by
local interactions with no above-threshold contributions
arising from residues outside the adjacent N-terminal and
C-terminal domains. Despite dissimilar sequences, the
9-1-1 and PCNA interfaces share common structural
features (4,15). At the core of each clamp interface is an
antiparallel b-sheet (strands S9 and S13), forming part of
the outer shell of the trimeric PCNA or 9-1-1 ring. This
b-sheet is reinforced to varying degrees by two adjacent
a-helices (labeled H2 and H3) facing toward the central
cavity of each clamp. Such an arrangement of secondary
structure elements imparts structural stability to the
clamps. Residue contacts in the loop regions above and
below the central b-sheet contribute with varying extent to
the overall binding energy of each interface. The planar
ring architecture results in the clamps being two-sided: the
front (top) face exposes the IDC loops and is thus respon-
sible for binding most replication factors (notably DNA
polymerases and the clamp loader). The back (bottom)

side of PCNA is characterized by three loops denoted as
P-loops (or guide loops). The 9-1-1 interfaces likewise
have a front and back side, and in the analyses that
follow, we have oriented all interfaces so that the IDCL-
presenting face is denoted as ‘top’ and the back face is
‘bottom’. Classification of the opening pathways follows
the same convention.
In Figure 2, we first compare the interfaces PCNA-

PCNA and Hus1-Rad1, which were suggested by Sohn
and Cho (16) to be structurally most similar. Indeed,
both interfaces are flat and hydrophobic, which is clearly
reflected in the presence of two prominent largely symmet-
ric peaks in the binding energy graphs. The peaks corres-
pond to the two antiparallel b-strands at the core of the
PCNA or Hus1-Rad1 interface and together account for
most of the computed �Gb. The roughly symmetric peaks
suggest that there is no preferred directionality to open
these two interface from either the top or the bottom side.
For PCNA the central b-sheet (V111-K117 and L175-

L182) is the primary determinant of interface stability
with 15 residues having above-threshold contributions.
The interface is stabilized by the presence of seven stable
backbone hydrogen bonds in a largely hydrophobic
sequence context. The residues in the middle of the sheet
contribute more significantly to �Gb than the flanking
residues at the edge of the sheet. There are very few
residues outside the b-sheet with above-threshold contri-
butions. Interactions between the adjacent helices H2 and
H3 are considerably less substantial, except for a single
salt bridge between residues D86 and R146 at the back
of the interface. Together, these two residues add
�10.56 kcal/mol to the total binding energy. Three add-
itional residues C81, H153 and I154 from helices H2 and
H3 also contribute �2.95, �1.89 and �2.30 kcal/mol,
respectively.
While the Hus1-Rad1 interface superficially resembles

the PCNA interface (16 contributing residues in the core
b-sheet; V128-N135 and L198-F205), the average
computed binding energy per residue within the b-sheet
is higher (�2.91 kcal/mol) for Hus1-Rad1 compared to
PCNA-PCNA (�2.65 kcal/mol). Additionally, there are
significantly more hydrophobic residues from the
adjacent H2 and H3 helices contributing above the thresh-
old level (V88, I95, F96, V169, N175, I176). Such differ-
ences in the extent of the hydrophobic contacts justify the
observed order of stability with the PCNA-PCNA inter-
face being easier to open than Hus1-Rad1.
In Figure 3, we compare the two more polar interfaces–

Rad9-Hus1 and Rad9-Rad1. Once again, interactions
within the central b-sheets play the most prominent role
(R127-P134 and M193-L199 for Rad9-Hus1; V118-L124
and A196-P204 for Rad9-Rad1), resulting in two primary
peaks in the 1-D MM/GBSA decomposition graphs. In
contrast to PCNA-PCNA and Hus1-Rad1, the peaks in
Figure 3 are largely asymmetric, featuring a broader dis-
tribution of binding energies. Stronger contacts are clus-
tered at the bottom of the two interfaces. These stronger
contacts are likely to break late during the interface
rupture induced by the clamp loader, whereas weak
contacts would break first. Therefore, the decomposition
of �Gb (either 1D or pairwise 2D) gives us a clear
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prediction of the preferred direction for opening the
subunit interfaces under external forces. The observed
asymmetry of the peaks for Rad9-Rad1 and Rad9-Hus1
is indicative of preferred direction to open both interfaces
from the top side. This trend is especially well pronounced
for Rad9-Rad1, which is also the most polar of the three
9-1-1 interfaces. However, there are also substantial dif-
ferences between Rad9-Rad1 and Rad9-Hus1 in terms of
the number and type of residues contributing to �Gb.
Rad9-Rad1 is clearly the weaker interface due to fewer
contacts within the core b-sheet and only two above-
threshold contributions from outside the b-sheet:
residues M89 and R85 from helix H2. By contrast, the
Rad9-Hus1 interface features not only exceptionally

strong contributions within the core b-sheet (per residue
average of �3.51 kcal/mol) but also many contributing
residues outside the core of the interface—N97 from
helix H2, L157 and P158 from helix H3, F110 and S123-
S125 from loop regions of the interface. Thus, Rad9-Hus1
appears to be the most substantial of all 9-1-1 subunit
interfaces.

Clamp opening pathways under external force

To address the mechanisms and pathways for clamp
opening, we monitored subunit interface disruption
under external forces. This was accomplished by
multiple-trajectory SMD runs using truncated PCNA

Figure 2. Origins of interface stability for the PCNA and Hus1-Rad1 interfaces from 1-D MM/GBSA decomposition analysis. (A) Aggregate
binding energies for the individual residues of the PCNA interface (left) and residue contributions mapped onto the structure (right).
(B) Aggregate binding energies for the individual residues of the Hus1-Rad1 interface (left) and residue contributions mapped onto the structure
(right). Only residues contributing above a ±1.5 kcalmol�1 threshold in �Gb are represented.
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and 9-1-1 models. Truncation to include only the
N-terminal and C-terminal domains from each interface
is fully justified by the MM/GBSA results, which showed
the clamp subunits to be held together entirely by local
interactions. The external forces were applied to pull apart
the b-strand at the core of each interface. Visual
classification of the SMD trajectories/opening pathways
(Table 2) was performed before detailed contact
analysis. Our SMD simulations showed that similar to
the case of protein folding, the clamp opening for both
PCNA and 9-1-1 does not occur through a single
uniform breakdown mechanism. Instead, the results are
consistent with the existence of an ensemble of parallel

Figure 3. Origins of interface stability for the Rad9-Hus1 and Rad9-Rad1 interfaces from 1-D MM/GBSA decomposition analysis. (A) Aggregate
binding energies for the individual residues of the Rad9-Hus1 interface (left) and residue contributions mapped onto the structure (right).
(B) Aggregate binding energies for the individual residues of the Rad9-Rad1 interface (left) and residue contributions mapped onto the structure
(right). Only residues contributing above a ±1.5 kcalmol�1 threshold in �Gb are represented.

Table 2. Classification of the DNA clamp opening pathways from

SMD

Pathway classification Subunit interface

PCNA/
PCNA

Rad9/
Hus1

Hus1/
Rad1

Rad9/Rad1

Top-down 12 16 9 17
Bottom-up 10 2 9 5
Concerted 8 4 1 0

Number of pathway classified as ‘top-down’, ‘bottom-up’ or ‘concerted’
for each clamp subunit interface are shown.
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clamp-opening pathways, some more prevalent than
others. These pathways are characterized by specific
groups of contacts that differentially stabilize the regions
of the interface and, thus, determine the spatial and
temporal patterns of breakdown. The stochastic nature
of interface opening is consistent with recent work of
Benkovic et al. (42), which pointed out that clamp
loading proceeds by an inefficient and largely heuristic
search. Instead of a single highly confined pathway, the
process involves multiple attempts and many intermedi-
ates (possibly also off-pathway states). Thus, in addition
to its primary function, the clamp loader has to recycle
incorrectly loaded clamps.
Despite the stochastic nature of clamp opening, the

dominant pathways exhibit certain common features.
Interface break-up almost invariably involves unzipping
of the central b-sheet (strands S9–S13) followed by separ-
ation of the more loosely connected H2 and H3 helices and
the loop regions of the interface. The unzipping of the b-
sheet can occur in the top-down direction, bottom-up dir-
ection or by cooperative collapse of the contacts between
the S9 and S13 strands. Therefore, in Table 2, we classify
the opening pathways as ‘top-down’, ‘bottom-up’ or ‘con-
certed’. We note that the classification is based on the
overall direction of opening for the entire interface (not
just the b-sheet collapse). In a small number of SMD
runs (<10%), the initial opening was followed by partial
re-formation of the contacts at the interface. These runs
were excluded from the pathway classification in Table 2.
Under external forces the four clamp interfaces display

distinct rupture mechanisms. For PCNA-PCNA and
Hus1-Rad1 clamp opening in the ‘top-down’ or ‘bottom-
up’ direction is equally probable. Indeed, for PCNA, all
three pathways, including the concerted pathway, are
equally represented. For Hus1-Rad1, there is a higher
tendency for the opening process to start from the ends
of the interface. However, once initiated, the unzipping is
completed within a narrow time interval, which is indica-
tive of almost cooperative disruption of the backbone
hydrogen bonds at the interface core (Figure 4E and F).
By contrast, the more polar Rad9-Rad1 and Rad9-Hus1
interfaces open preferentially in the ‘top-down’ direction.
This outcome is fully consistent with our prediction from
the 1D and pairwise MM/GBSA decompositions
(Figures 2 and 3 and Supplementary Figure S1). The
origin of preferred directionality lies in the uneven distri-
bution of strong polar or charged contacts along these
interfaces. Moreover, polar contacts found outside the
central b-sheet exert more significant bias on the
opening direction. The reason for this outcome is that
these contacts involve specific side-chain interactions,
whereas contacts within the core b-sheet occur mostly
through the backbone and are thus non-specific.
Preferred directionality is lost when the core of the inter-
face is primarily hydrophobic and held together by
backbone hydrogen bonds (as is the case for PCNA-
PCNA and Hus1-Rad1).
Next, we carried out detailed analysis of the interface

rupture mechanisms in PCNA and 9-1-1. To this end, we
subdivided all pulling runs by type of opening pathway
(Table 2) and analyzed the pattern of contact disruption

as the interfaces were pulled apart. Only residue contacts
contributing above-threshold in the pairwise MM/GBSA
decomposition were considered and their time evolution
monitored throughout the pulling trajectory. To follow
the contact dynamics, we first classified the MM/GBSA
residue pairs by type of interaction. For hydrogen bond
contacts (backbone, side-chain H-bonds and direct salt
bridges), we used heavy atom distance cutoff of 3.3 Å and
an angle cutoff of 50�. Hydrophobic contacts were
identified by considering whether heavy atoms from the
first hydrophobic residue were in van der Waals contact
with any heavy atom from the second hydrophobic
residue. Polar residues not involved in hydrogen bonding
were treated by applying the same distance criterion used
for hydrophobic contacts. The time of last occurrence
(within the specified cutoffs) of each MM/GBSA pair was
recorded, and these times were averaged over the
trajectories belonging to the same pathway. Naturally,
identical contacts collapse at different times in different
trajectories. However, we observed that within each
pathway, the rupture events for specific contacts occurred
within narrow time intervals, justifying the use of averaged
break-up times in defining the opening mechanism.

Results from this analysis are shown in Figure 4 and
reveal the characteristics of the dominant pathways for
subunit interface disruption in PCNA and 9-1-1.
Description of the contacts includes average break-up
times in nanoseconds and interaction energies �Gb from
the pairwise MM/GBSA decomposition (noted in paren-
thesis after each contact). For PCNA (Figure 4A and B),
the opening mechanism is dominated by the disruption of
the two antiparallel b-strands in the outer shell of the
clamp. There is no clear distinction between the ‘top-
down’ and ‘bottom-up’ pathways in terms of timing of
contact disruption. Indeed, the majority of contacts
between the b-strands disappears in a relatively narrow
time interval from 1.5 ns to 4 ns, regardless of whether
strand unzipping is initiated from the top or bottom side.

For the 9-1-1 interfaces, it generally took more time to
initiate S9–S13 strand separation. This is illustrated by the
shift in color toward the green/blue end of the scale as
compared with PCNA in overall agreement with our
�Gb results. Pulling the Hus1-Rad1 interface did not
result in a single dominant pathway (Figure 4E and F)
consistent with the flattened binding energy profile in the
1D or pairwise 2D MM/GBSA decompositions. Rupture
of the core b-sheet in Hus1-Rad1 occurred with no
obvious directionality and within an even narrower time
range compared to PCNA: 2.9 ns—3.6 ns for the top-
down pathway and 2.9 ns—4.0 ns for the bottom-up
pathway. The pair Val199–Lys133 (�1.76 kcal/mol)
lasted longer than any other b-sheet contact (5.8 ns)
owing to the long flexible side chain of Lys133 reaching
across the interface. The strongest contacts from the H2,
H3 a-helices N175-D91 (�4.54 kcal/mol), K172-D91
(�4.05 kcal/mol) and K172-S94 (�2.80 kcal/mol) lasted
beyond the complete separation of the b-strands in both
pathways (rupture times of 8.2, 8.1 and 7.5 ns, respect-
ively). Therefore, helix separation on the inner side
of the interface occurred after the rupture of the core
b-strands. We conclude that just like in PCNA, the
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Figure 4. Dominant pathways for DNA clamp opening from contact analysis of SMD simulations. Time evolution of significant contacts for (A) the
PCNA interface in the ‘top-down’ pathway; (B) the PCNA interface in the ‘bottom-up’ pathway; (C) the Rad9-Hus1 interface in the ‘top-down’
pathway; (D) the Rad9-Rad1 interface in the ‘top-down’ pathway; (E) the Hus1-Rad1 interface in the ‘top-down’ pathway; (F) the Hus1-Rad1
interface in the ‘bottom-up’ pathway. Averaged break-up times of above-threshold contacts from the pairwise MM/GBSA decomposition are color-
mapped on the panels from red (0 ns) to blue (8 ns).
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Hus1-Rad1 interface opens by cooperative non-direc-
tional unzipping of the core b-strands dominated by dis-
ruption of hydrophobic contacts.
The top-down pathway was the dominant mechanism

for opening the Rad9-Hus1 interface (Figure 4C).
Disruption of the core b-strands for this interface
occurred in a much broader time range (2.0–7.0 ns)
compared with PCNA, indicating the presence of persist-
ent contacts whose break-up requires much larger external
forces. This notion is consistent with Rad9-Hus1 being the
most stable of all 9-1-1 interfaces. The strongest inter-
action identified in the pairwise decomposition was
between charged residues D203–R127 (�10.8 kcal/mol)
and was positioned at the extreme back side of the inter-
face. Not surprisingly, this was the last contact to break at
10.6 ns. Other robust contacts included E154-R127
(�4.12 kcal/mol), E202-S125 (�4.45 kcal/mol), E202-
Ser124 (�5.62 kcal/mol), D203–S123 (�2.66 kcal/mol)
and L157-K93 (�3.38 kcal/mol), which all resided in the
bottom region of the interface and cooperatively resisted
separation until average break-up times well above 6.5 ns.
All of these pairs included polar or charged residues,
corroborating the importance of charged interactions in
maintaining interface stability and establishing a predom-
inant opening direction.
The opening mechanism of the Rad9-Rad1 interface

(Figure 4D) revealed an even more pronounced tendency
for directional opening as compared with Rad9-Hus1.
Rupture of the interface was initiated from the top side,
which incidentally is also the side binding the clamp
loader. Thus, it is attractive to speculate that the Rad9-
Rad1 interface is weakest precisely at the point of appli-
cation of mechanical force by the clamp loader. A group
of resilient pairwise interactions at the bottom of the inter-
face is responsible for the observed ‘top-down’ direction-
ality of opening. These interactions feature both charged
and hydrophobic residue contacts: R119-D202
(�16.50 kcal/mol), R85-E169 (�6.55 kcal/mol), F116-
L209 (�2.54 kcal/mol), F116-S207 (�2.66 kcal/mol) and
V118-Y203 (�2.98 kcal/mol). The strongest contact
R119-D202 resides at the lower end of the b-sheet and
along with V118-Y203 did not break until a very late
stage (5.8 ns) of interface separation. Phe116-Leu209 was
typically the last contact to rupture (11.7 ns) in most of the
SMD trajectories. Despite the overall top-down rupture
pattern, there were a couple of persistent contacts at the
top of Rad9-Rad1. These involved the salt bridge
R85-E169 (�6.55 kcal/mol) and the S86-E169 pair, both
located at the top of the H2, H3 a-helices. Maintaining
these two contacts until the latter stages of interface sep-
aration (7.8 ns) was made possible by the long side chains
of Arg85 and E169, which could reach across the partially
opened S9–S13 b-strands. Once again, the results highlight
the importance of salt bridges in determining the interface
opening mechanism and for the overall architecture of the
DNA clamps.

Concluding remarks

The toroidal architecture adopted by DNA clamps is a
perfect example of how molecular shape follows

function. Despite low sequence similarity, clamps from
bacteriophage to archaea and humans all form trimeric
rings encircling DNA. The function of these protein
rings is to serve as mobile scaffolds in the coordinated
assembly of the DNA replication and repair machinery.
In this case, function requires a subtle balance between the
ability to form stable trimers and the necessity to open to
be loaded onto DNA. All clamps use a common loading
mechanism, wherein a single subunit interface is ruptured
by the clamp loader to allow threading of primer-template
DNA and followed by closure of the ring.

Why have two distinct clamps, PCNA and 9-1-1,
evolved in humans? One may speculate that the purpose
of the heterotrimeric 9-1-1 is to ensure selective recruit-
ment of different partners to different subunits on the
same ring-shaped platform. This cannot be accomplished
by PCNA, except in a stochastic manner because the
PCNA subunits are equivalent. Importantly, the different
subunits of 9-1-1 not only differentiate the clamp from
PCNA but also open up the possibility that affinity differ-
ences among the clamp interfaces may have functional
significance. Specifically, it has been proposed that the
Rad9-Rad1 interface of the checkpoint clamp is the
weakest and, therefore, serves as the opening gate for
loading 9-1-1 onto chromatin. However, this proposal
remains controversial with others positing Hus1–Rad1 is
the opening gate based on structural resemblance to the
PCNA interface. Through detailed subunit interface
analysis, we identified Rad9-Rad1 as having the lowest
affinity among all 9-1-1 interfaces. This finding makes
Rad9-Rad1 a clear candidate to be the 9-1-1 opening
gate. The Hus1-Rad1 interface was similar to PCNA in
overall structure and hydrophobicity and opened up by an
analogous rupture mechanism. However, the total binding
energy �Gb of Hus1-Rad1 was higher than the energy of
Rad9-Rad1. Furthermore, the affinities of Rad9-Rad1
and PCNA-PCNA were closely matched, despite
pronounced dissimilarities in interface contacts and
polar character. Thus, matching affinities may reflect the
common energetic requirements of the clamp loading ma-
chinery to open PCNA and Rad9-Rad1.

Using external SMD forces as a surrogate of the clamp
loader, we also identified the dominant pathways for inter-
face disruption in PCNA and 9-1-1. In agreement with
recent experimental work, we demonstrate the stochastic
nature of clamp opening and observe an ensemble of
opening pathways. We find that the overall directionality
and cooperativity of the dominant pathways are distinct
among the four clamp interfaces. Groups of contacts (es-
pecially charged and polar contacts) differentially stabilize
the top and bottom regions of the Rad9-Rad1 and Rad9-
Hus1 interfaces and determine the spatial and temporal
patterns of breakdown. In Rad9-Rad1 and Rad9-Hus1,
the dominant pathway involves unzipping of secondary
structure elements in the ‘top-down’ direction. By
contrast, the predominantly hydrophobic Hus1-Rad1
and PCNA interfaces are disrupted concertedly with no
preferred directionality. Collectively, the results provide a
framework for future experiments to examine the DNA
clamp opening mechanisms. Specifically, single molecule
micromanipulation experiments (with optical or magnetic
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tweezers) along with mutational substitution of residue
pairs at the clamp interfaces could be used to probe the
computationally identified pathways and establish the
barriers and energy requirements for clamp opening.
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