59 research outputs found

    DoSTra: Discovering common behaviors of objects using the duration of staying on each location of trajectories

    Full text link
    Since semantic trajectories can discover more semantic meanings of a user\u27s interests without geographic restrictions, research on semantic trajectories has attracted a lot of attentions in recent years. Most existing work discover the similar behavior of moving objects through analysis of their semantic trajectory pattern, that is, sequences of locations. However, this kind of trajectories without considering the duration of staying on a location limits wild applications. For example, Tom and Anne have a common pattern of Home→Restaurant → Company → Restaurant, but they are not similar, since Tom works at Restaurant, sends snack to someone at Company and return to Restaurant while Anne has breakfast at Restaurant, works at Company and has lunch at Restaurant. If we consider duration of staying on each location we can easily to differentiate their behaviors. In this paper, we propose a novel approach for discovering common behaviors by considering the duration of staying on each location of trajectories (DoSTra). Our approach can be used to detect the group that has similar lifestyle, habit or behavior patterns and predict the future locations of moving objects. We evaluate the experiment based on synthetic dataset, which demonstrates the high effectiveness and efficiency of the proposed method

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Efficient detection of emergency event from moving object data streams

    Full text link
    The advance of positioning technology enables us to online collect moving object data streams for many applications. One of the most significant applications is to detect emergency event through observed abnormal behavior of objects for disaster prediction. However, the continuously generated moving object data streams are often accumulated to a massive dataset in a few seconds and thus challenge existing data analysis techniques. In this paper, we model a process of emergency event forming as a process of rolling a snowball, that is, we compare a size-rapidly-changed (e.g., increased or decreased) group of moving objects to a snowball. Thus, the problem of emergency event detection can be resolved by snowball discovery. Then, we provide two algorithms to find snowballs: a clustering-and-scanning algorithm with the time complexity of O(n 2) and an efficient adjacency-list-based algorithm with the time complexity of O(nlogn). The second method adopts adjacency lists to optimize efficiency. Experiments on both real-world dataset and large synthetic datasets demonstrate the effectiveness, precision and efficiency of our algorithms © 2014 Springer International Publishing Switzerland

    Effect of Temperature on the Physical Salt Attack of Cement Mortars under Repeated Partial Immersion in Sodium Sulfate Solution

    No full text
    Physical salt attack (PSA) is one of the dominant durability issues of cement-based materials, where salt crystallization pressure is the driving force inducing damage. However, research on the temperature-related deterioration behavior of cement-based materials is limited. In this study, salt-contaminated cement mortars were rewetted at different temperatures. The assessment criteria were based on the visual appearance, weight evolution and size distribution of scaled materials, and the alterations in the microstructure were investigated by microscopy, thermal and mineralogical analyses. The results indicated that more severe damage developed at 5 °C than that at 20 °C due to the greater crystallization pressure caused by the conversion from thenardite (Na2SO4) to mirabilite (Na2SO4·10H2O) at the lower temperature. No damage was observed at 35 °C, since the repeated dissolution and re-crystallization of thenardite were harmless for the specimens. In addition, two distinct damage patterns were observed for PSA performed at 5 °C and 20 °C, namely, granular disintegration and contour scaling

    WILLINGNESS TO PAY FOR IMPLEMENTING HACCP SYSTEMS IN CHINA’S SMALL AND MEDIUM-SIZED FOOD ENTERPRISES

    No full text
    In China, a large number of small and medium-sized food enterprises (food SMEs) rarely adopt the hazard analysis and critical control points (HACCP) system, which results in a low product quality. Some local governments have encouraged food SMEs to implement HACCP systems through financial subsidies, but because of an incomplete understanding of the willingness to pay (WTP) for implementing HACCP systems in food SMEs, relevant policies have not enhanced the adoption rate of HACCP systems. Based on our questionnaire survey data of 132 food SMEs in China's Henan, Guangdong, and Zhejiang provinces, this study estimates Chinese food SMEs' WTP for implementing HACCP systems by a double bounded dichotomous choice contingent valuation method (CVM). According to the estimated results, the WTP for implementing HACCP systems under the log-logistic model is approximately 115,714 Chinese RMB (113,149 Chinese RMB for the log-normal model)

    Investigation on efficiency declines due to spectral overlap between LDAs pump and laser medium in high power double face pumped slab laser

    No full text
    In high power diode lasers, the input cooling water temperature would affect both output power and output spectrum. In double face pumped slab laser, the spectrum of two laser diode arrays (LDAs) must be optimized for efficiency reason. The spectrum mismatch of two LDAs would result in energy storing decline. In this work, thermal induced efficiency decline due to spectral overlap between high power LDAs and laser medium was investigated. A numerical model was developed to describe the energy storing variation with changing LDAs cooling water temperature and configuration (series/parallel connected). A confirmatory experiment was conducted using a double face pumped slab module. The experiment results show good agreements with simulations

    Modelling semantics across multiple time series and its applications

    Full text link
    Analysis based on the holistic multiple time series system has been a practical and crucial topic. In this paper, we mainly study a new problem that how the data is produced underneath the multiple time series system, which means how to model time series data generating and evolving rules (here denoted as semantics). We assume that there exist a set of latent states, which are the system basis and make the system run: data generating and evolving. Thus, there are several challenges on the problem: (1) How to detect the latent states; (2) How to learn the rules based on the states; (3) What the semantics can be used for. Hence, a novel correlation field-based semantics learning method is proposed to learn the semantics. In the method, we first detect latent state assignment by comprehensively considering kinds of multiple time series characteristics, which contain tick-by-tick data, temporal ordering, relationship among multiple time series and so on. Then, the semantics are learnt by Bayesian Markov characteristic. Actually, the learned semantics could be applied into various applications, such as prediction or anomaly detection for further analysis. Thus, we propose two algorithms based on the semantics knowledge, which are applied to make next-n step prediction and detect anomalies respectively. Some experiments on real world data sets were conducted to show the efficiency of our proposed method
    corecore