80 research outputs found

    The evaluation of government subsidy policies on carbon emissions in the port collection and distribution network: a case study of Guangzhou Port

    Get PDF
    The collection and distribution network of ports is the main cause of carbon emissions. The carbon peak is a basic policy in China, and the subsidy policy is one of the common measures used by the government to incentivize carbon reduction. We analyzed the transportation methods and the flow direction of a port and proposed a carbon emission calculation method based on emission factors. Based on the transportation time and the cost, a generalized transportation utility function was constructed, and the logit model was used to analyze the impacts of subsidy policies on transportation, thus calculating the effects of the subsidies on carbon reduction. We used Guangzhou Port as a case study, and calculated the carbon reduction effects in six different subsidy policy scenarios and concluded that the absolute carbon reduction value was proportional to the subsidy intensity. In addition, we constructed a subsidy carbon reduction efficiency index and found that the Guangzhou Port collection and distribution network had higher subsidy carbon reduction efficiency in low-subsidy scenarios. Finally, a sensitivity analysis was conducted on the subsidy parameters, and scenario 8 was found to have the highest subsidy carbon reduction efficiency. This achievement can provide decision support for the carbon emission strategy of the port collection and distribution network

    Monthly land cover-specific evapotranspiration models derived from global eddy flux measurements and remote sensing data

    Get PDF
    Evapotranspiration (ET) is arguably the most uncertain ecohydrologic variable for quantifying watershed water budgets. Although numerous ET and hydrological models exist, accurately predicting the effects of global change on water use and availability remains challenging because of model deficiency and/or a lack of input parameters. The objective of this study was to create a new set of monthly ET models that can better quantify landscape-level ET with readily available meteorological and biophysical information. We integrated eddy covariance flux measurements from over 200 sites, multiple year remote sensing products from the Moderate Resolution Imaging Spectroradiometer (MODIS), and statistical modelling. Through examining the key biophysical controls on ET by land cover type (i.e. shrubland, cropland, deciduous forest, evergreen forest, mixed forest, grassland, and savannas), we created unique ET regression models for each land cover type using different combinations of biophysical independent factors. Leaf area index and net radiation explained most of the variability of observed ET for shrubland, cropland, grassland, savannas, and evergreen forest ecosystems. In contrast, potential ET (PET) as estimated by the temperaturebased Hamon method was most useful for estimating monthly ET for deciduous and mixed forests. The more data-demanding PET method, FAO reference ET model, had similar power as the simpler Hamon PET method for estimating actual ET. We developed three sets of monthly ET models by land cover type for different practical applications with different data availability. Our models may be used to improve water balance estimates for large basins or regions with mixed land cover types

    Type-II GaSb/InAlAs quantum dots grown on InP (001) substrate by droplet epitaxy (Conference Presentation)

    Get PDF
    The GaSb quantum dots (QDs) with type II band alignment have attracted great attention recently. They are predicted to be optimizing active region materials for achieving high efficient intermediate-band solar cells and for obtaining ultra-long storage time for memory cells. In this research, GaSb QDs sandwiched inside InAlAs matrix lattice-matched to InP (001) substrate have been obtained via droplet epitaxy. The droplet epitaxy enable us to achieve low density (~2.6 x 10^9/cm^2) and large size (average height ~6.5nm) for the QDs while the lattice mismatch between the GaSb and InAlAs matrix is only ~4%. PL measurements reveal a type-II band alignment for these GaSb/InAlAs/InP QDs. The PL peak energy of QDs shows a blue-shift of >100 meV when the laser intensity increases by six orders of magnitude. Time-resolved PL measurements further confirm the type-II band alignment for the QDs by showing a maximum carrier lifetime of ~4.5 ns. The abnormal dependence of peak energy of QD PL band on the temperature in together with the special PL decay curve indicate that these GaSb/InAlAs QDs likely have different physics mechanism from common GaSb/GaAs type-II QDs. This study provide useful information for understanding the band structure and carrier dynamics of the GaSb/InAlAs QDs grown on InP surface

    Genome-wide association study uncovers new genetic loci and candidate genes underlying seed chilling-germination in maize

    Get PDF
    As one of the major crops, maize (Zea mays L.) is mainly distributed in tropical and temperate regions. However, with the changes of the environments, chilling stress has become a significantly abiotic stress affecting seed germination and thus the reproductive and biomass accumulation of maize. Herein, we investigated five seed germination-related phenotypes among 300 inbred lines under low-temperature condition (10Ā Ā°C). By combining 43,943 single nucleotide polymorphisms (SNPs), a total of 15 significant (PĀ <Ā 2.03 ƗĀ  10-6) SNPs were identified to correlate with seed germination under cold stress based on the FarmCPU model in GWAS, among which three loci were repeatedly associated with multiple traits. Ten gene models were closely linked to these three variations, among which Zm00001d010454, Zm00001d010458, Zm00001d010459, and Zm00001d050021 were further verified by candidate gene association study and expression pattern analysis. Importantly, these candidate genes were previously reported to involve plant tolerance to chilling stress and other abiotic stress. Our findings contribute to the understanding of the genetic and molecular mechanisms underlying chilling germination in maize

    Overexpression of an Incw2 gene in endosperm improved yield-related traits in maize

    Get PDF
    High yield is an eternal goal for crop breeding. Incw2 protein is the enzyme in the metabolic pathway that mobilizes photoassimilated sucrose into numerous reactions of the developing plant seeds, associated with grain yield. In the research, an Incw2 gene driven by 27 kD zein promoter was specifically over-expressed in the endosperm cells of maize inbred line 18-599R by Agrobacterium-mediated genetic transformation. PCR assay displayed that ten of the regenerated plants were integrated with the target gene. By semi-quantitative RT-PCR and invertase activity analysis, five of them showed significantly higher expression of Incw2 transcripts and enzyme activity compared to the wild type. Among them, line 1 stood out because it possessed the highest level of Incw2 mRNA and enzyme activity. The effects of Incw2 over-expression were reflected in the increased chlorophyll content, improved phoĀ¬tosynthesis and delay of leaf senility. In addition, yield-related traits such as ear length, ear diameter, ear weight, grain weight per ear, and hundred-kernel weight appeared to be improved in three of the transformants compared with the wild type. The grain weight per plant of line1 was increased by nearly 10%. The results collectively indicate that it is potentially practical to enhance kernel yield of maize by overexpression of Incw2 in endosperm

    GWAS and WGCNA uncover hub genes controlling salt tolerance in maize (Zea mays L.) seedlings

    Get PDF
    Salt stress influences maize growth and development. To decode the genetic basis and hub genes controlling salt tolerance is a meaningful exploration for cultivating salt-tolerant maize varieties. Herein, we used an association panel consisting of 305 lines to identify the genetic loci responsible for Na+- and K+-related traits in maize seedlings. Under the salt stress, seven significant single nucleotide polymorphisms were identified using a genome-wide association study, and 120 genes were obtained by scanning the linkage disequilibrium regions of these loci. According to the transcriptome data of the above 120 genes under salinity treatment, we conducted a weighted gene co-expression network analysis. Combined the gene annotations, two SNaC/SKC (shoot Na+ content/shoot K+ content)-associated genes GRMZM2G075104 and GRMZM2G333183 were finally identified as the hub genes involved in salt tolerance. Subsequently, these two genes were verified to affect salt tolerance of maize seedlings by candidate gene association analysis. Haplotypes TTGTCCG-CT and CTT were determined as favorable/salt-tolerance haplotypes for GRMZM2G075104 and GRMZM2G333183, respectively. These findings provide novel insights into genetic architectures underlying maize salt tolerance and contribute to the cultivation of salt-tolerant varieties in maize

    Abnormal photoluminescence for GaAs/Al 0.2 Ga 0.8 As quantum dot - ring hybrid nanostructure grown by droplet epitaxy

    Get PDF
    The optical properties have been investigated for the GaAs/Al0.2Ga0.8As quantum dot-ring hybrid nanostructures grown by droplet epitaxy, in which each nanostructure consists of four quantum dots (QDs) sitting on a distinct ring of GaAs. A blueshift and narrowing of the photoluminescence (PL) spectra along with the nonlinear decay of the time-resolved PL curves of the QDs have been observed. These abnormal PL behaviors are caused by the unique state filling effect correlated with the quantum dot-ring structure feature, which is strongly affected by carrier transfer from smaller dots to larger dots via the wetting ring in the GaAs/Al0.2Ga0.8As hybrid structure

    Cloning and characterization of miRNAs from maize seedling roots under low phosphorus stress

    Get PDF
    MicroRNAs (miRNAs) are a class of small, non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition in plants and animals. In this study, a small RNA library was constructed to identify conserved miRNAs as well as novel miRNAs in maize seedling roots under low level phosphorus stress. Twelve miRNAs were identified by high throughput sequencing of the library and subsequent analysis, two belong to conserved miRNA families (miRNA399b and miRNA156), and the remaining ten are novel and one of latter is conserved in gramineous species. Based on sequence homology, we predicted 125 potential target genes of these miRNAs and then expression patterns of 7 miRNAs were validated by semi-RT-PCR analysis. MiRNA399b, Zma-miR3, and their target genes (Zmpt1 and Zmpt2) were analyzed by real-time PCR. It is shown that both miRNA399b and Zma-miR3 are induced by low phosphorus stress and regulated by their target genes (Zmpt1 and Zmpt2). Moreover, Zma-miR3, regulated by two maize inorganic phosphate transporters as a newly identified miRNAs, would likely be directly involved in phosphate homeostasis, so was miRNA399b in Arabidopsis and rice. These results indicate that both conserved and maize-specific miRNAs play important roles in stress responses and other physiological processes correlated with phosphate starvation, regulated by their target genes. Identification of these differentially expressed miRNAs will facilitate us to uncover the molecular mechanisms underlying the progression of maize seedling roots development under low level phosphorus stress
    • ā€¦
    corecore