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ABSTRACT

Evapotranspiration (ET) is arguably the most uncertain ecohydrologic variable for quantifying watershed water budgets.
Although numerous ET and hydrological models exist, accurately predicting the effects of global change on water use and
availability remains challenging because of model deficiency and/or a lack of input parameters. The objective of this study was to
create a new set of monthly ET models that can better quantify landscape-level ET with readily available meteorological and
biophysical information. We integrated eddy covariance flux measurements from over 200 sites, multiple year remote sensing
products from the Moderate Resolution Imaging Spectroradiometer (MODIS), and statistical modelling. Through examining the
key biophysical controls on ET by land cover type (i.e. shrubland, cropland, deciduous forest, evergreen forest, mixed forest,
grassland, and savannas), we created unique ET regression models for each land cover type using different combinations of
biophysical independent factors. Leaf area index and net radiation explained most of the variability of observed ET for shrubland,
cropland, grassland, savannas, and evergreen forest ecosystems. In contrast, potential ET (PET) as estimated by the temperature-
based Hamon method was most useful for estimating monthly ET for deciduous and mixed forests. The more data-demanding
PET method, FAO reference ET model, had similar power as the simpler Hamon PET method for estimating actual ET. We
developed three sets of monthly ET models by land cover type for different practical applications with different data availability.
Our models may be used to improve water balance estimates for large basins or regions with mixed land cover types. Copyright
© 2015 John Wiley & Sons, Ltd.

KEY WORDS eddy covariance flux; evapotranspiration; ecosystem modelling; ecohydrology; FLUXNET

Received 12 August 2014; Revised 25 January 2015; Accepted 16 March 2015

INTRODUCTION

Global climate and land use changes directly affect the
hydrological cycle (Caldwell et al., 2012), water resources
(Sun et al., 2008; Thompson et al., 2014), and ecosystem
services (King et al., 2013) by altering evapotranspiration
(ET) processes at multiple scales. ET is tightly coupled
with the ecosystem energy balance (Chen et al., 2004;
Sun et al., 2010) and carbon balance (Law et al., 2002;

Beer et al., 2007; Beer et al., 2010; Sun et al., 2011a;
Tian et al., 2011), and thus plays an important role in the
climatic feedback between land surface and climate
systems (Baldocchi et al., 2001; Bonan, 2008; Cheng
et al., 2011). In spite of the importance of quantifying ET
for various ecosystems (Baldocchi and Ryu, 2011;
Shuttleworth, 2012), accurate quantification of watershed
to regional scale ET remains costly and uncertain due to
the highly dynamic nature of ET processes (Sun et al.,
2011a; Li et al., 2012; McMahon et al., 2012; Jasechko
et al., 2013).
There are many ways to quantify ET at different

temporal and spatial scales (Jackson et al., 2000;
Shuttleworth, 2012). Direct ecosystem-scale ET measure-
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ment techniques include catchment water balance (Bosch
and Hewlett, 1982), sap flow (Smith and Allen, 1996), eddy
covariance (Baldocchi et al., 2001), and Bowen Ratio
methods. Remote sensing techniques allow monitoring ET
at a very large spatial scale (Kustas and Norman, 1996).
Wilson et al. (2001), and more recently, Domec et al.
(2012a) compared multiple direct ET measurement methods
and found that each method had its own limitations. The
eddy covariance method measures site-level fluxes contin-
uously, offering high temporal resolution data series and
representing perhaps the most accurate method in
ecohydrological studies during the past two decades.
Remote sensing has been widely used to estimate global
ET (Justice et al., 1998; Ray and Dadhwal, 2001; Mu et al.,
2007, 2010; Mu et al., 2011; Song et al., 2011), and the
accuracy of the resulting gridded products is often assessed
using eddy covariance flux measurements.
Because of the high cost ofmeasuringET directly (e.g. eddy

flux methods) or estimating at large scales (i.e. watershed to
regional), mathematical modelling has been widely used to
estimate ET (see review in McMahon et al., 2012). The
empirical ET models developed by Zhang et al. (2001), Sun
et al. (2011a, b), and Zeng et al. (2012) capture the basic
biophysical controls on ET including leaf area index (LAI),
water, and energy availability (Feng et al., 2012; Hoy, 2012).
However, these models clearly have deficiencies. For
example, while these models take into account differences in
LAI among land cover types, the same equation is used for all
land cover types that does not differentiate the influence of
biome-specific physiological characteristics (e.g. canopy
conductance, rooting depth, and water use efficiency) on ET
processes (Mackay et al., 2007). The literature shows that ET
rates vary across different vegetation cover types under similar
climatic and meteorological conditions (Dunn and Mackay,
1995; Liu et al., 2010).
The objectives of this study were to (1) examine the

environmental controls of ET in terrestrial ecosystems at a
monthly time scale by combining ET measurements from the
global eddy covariance flux network and remote sensing data,
and (2) create a new set of ET models to improve the previous
ET models (Sun et al., 2011a, 2011b) by separating land cover
types. We used the following hypotheses to guide our analysis:
(1) the variablesmost important in explaining observedmonthly
ET variability differ among land cover types, (2) separating land
cover type improves model accuracy from lumped models, and
(3) monthly ET can be modelled sufficiently using simple
energy and water availability variables, such as potential ET
(PET) and precipitation, and LAI.

DATA AND METHODS

Several large time series databases were used to develop
the ET models. Mean values of daily ET and other

environmental variables were used to derive monthly
values from mean daily values. We first corrected the
reported daily ET by closing the energy balance. Then, we
combined the corrected monthly ET, monthly total P,
mean MODIS LAI, other monthly environmental variables
(e.g. mean VPD), and PET data into one dataset. We
associated all these variables with land cover types. The
database spanned seven years (2000–2006) and included
9637 site-month records.

FLUXNET La Thuile ET database

This study combined site-level remote sensing data and La
Thuile eddy flux database developed by the FLUXNET
(http://www.eosdis.ornl.gov/FLUXNET) – a global
network that measures the exchanges of carbon dioxide,
water vapour, and energy between the biosphere and
atmosphere (Baldocchi et al., 2001; Figure 1). FLUXNET
data have been widely used to quantify the dynamics of
regional and global ecosystem carbon and water balances
(Beer et al., 2010; Jung et al., 2010; Williams et al., 2012;
Xiao et al., 2012), and to validate various ecosystem
models in which ET is a major control to the biogeochem-
ical processes (Tian et al., 2011; Tian et al., 2012). The La
Thuile ET database derived from a synthesis effort by
FLUXNET consisted of 218 sites for the time period of
2000–2006 (Figure 1). These flux sites spanned a wide
range of climate and physiographic regions in both
hemispheres and on five continents with latitudinal
distribution that ranged from 70° north to 30° south. The
mean annual precipitations ranged from 93 (RU-Che,
North Russia, snow dominated) to 2633mm (CN-Anh,
East China), and the mean annual temperature ranged from
�5.8 (RU-Che) to 26.6 C (ID-Pag, North Indonesia)
(Figure 2). The database included 4 sites in savannas
(SAV), 5 sites in closed shrubland (CS), 10 sites in open
shrubland (OS), 12 sites in mixed forest (MF), 17 sites in
evergreen broad leaf forest (EBF), 29 sites in deciduous
broad leaf forest (DB), 31 sites in cropland (CRO), 44 sites
in grassland (GRA), and 66 sites in evergreen needleleaf
forest (ENF).
In addition to the ET measurements, the La Thuile

database included biophysical variables that were used to
explain the variability in ET. The variables used study
included daily latent heat flux (LE, MJm�2), air temper-
ature (Ta, °C), vapour pressure deficit (VPD, 100Pa),
precipitation (P, mm), net radiation (Rn, MJm�2), sensible
heat flux (H, MJm�2), and soil heat flux (G, MJm�2).
General site characteristics including the International
Geosphere-Biosphere Program (IGBP) vegetation classifi-
cation, latitude, and longitude were also collected. The
daily flux data were scaled from half-hour eddy
covariance measurements (Valentini et al., 2000;
Baldocchi et al., 2001).

Y. FANG et al.

Copyright © 2015 John Wiley & Sons, Ltd. Ecohydrol. (2015)

http://www.eosdis.ornl.gov/FLUXNET


Uncertainties exist in the La Thuile data including
measurement errors and misunderstanding of computing
methods (Hollinger and Richardson, 2005). Data were
considered erroneous or outliers and were removed from
the database records when daily Rn exceeded 100MJm�2,
daily LE or H exceeded 25MJm�2, calculated daily PET
was negative, ET exceeded 300mmmonth�1, or VPD was
negative. In addition, when estimating monthly sums from
monthly mean using daily data, we removed those months
with the number of day less than 15 days and the data gaps
were centered within the month time span. As result, the

number of sites used varied in this study for developing
different models and analyses at different temporal scales.
We used an integrated procedure (Figure 3) to process

the La Thuile database of eddy flux measurements from
218 sites. According to the IGBP land cover classification
system, these eddy flux sites cover nine land cover types:
shrubland including both closed (CS) and open shrubland
(OS), cropland (CRO), grassland (GRA), deciduous broad
leaf forest (DB), evergreen needleleaf forest (ENF) and
evergreen broad leaf forest (EBF), mixed forest (MF), and
savannas (SAV). For each eddy flux tower site (Figure 1),

Figure 1. Distribution of FLUXNET research site and IGBP land cover type.

Figure 2. Distribution of annual mean temperature and precipitation. CRO, cropland; CS, closed shrubland; DB, deciduous broadleaf forest; EBF,
evergreen broadleaf forest; ENF, evergreen needleleaf forest; GRA, grassland; MF, mixed forest; OS, open shrubland; SAV, savannas.
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we acquired ET and associated micro-meteorological data,
and built relational databases of ET, VPD, P, wind speed,
and Rn. PET was calculated from mean monthly air
temperature using the Hamon’s method (see detailed
description later).

Leaf area index data from MODIS products

Leaf area index represents projected leaf surface area per
unit ground area (m2m�2). The development of remote
sensing techniques made global LAI measurements
available at a large range of spatial resolutions and short
time interval (Asrar et al., 1983; Running, 1984; Running
et al., 1989). LAI has been widely used in understanding
ecosystem processes and building ET and hydrological
models (Cramer et al., 1999; Sun et al., 2011a, 2011b).
The LAI time series for each tower site was downloaded

from the Oak Ridge National Laboratory Distributed
Active Archive Center (http://daac.ornl.gov/cgi-bin/
MODIS/GR_col5_1/mod_viz.html). MODIS LAI was
derived from the fraction of absorbed photosynthetically
active radiation (FPAR) that a plant canopy absorbs for
photosynthesis and growth in the 0.4–0.7 nm spectral
range. LAI is the biomass equivalent of FPAR. The
MODIS LAI/FPAR algorithm exploits the spectral

information of MODIS surface reflectance at up to seven
spectral bands. We extracted monthly LAI data for the time
period from 2000 through 2006 across 254 sites using 8-
day GeoTIFF data from the Moderate Resolution Imaging
Spectroradiometer (MODIS) land subsets’ 1-km LAI
global fields. First, we downloaded 8-day data for each
site based on latitude and longitude. We then converted
image data into a grid format and multiplied by a scale
factor (0.1) to get the true value of LAI (Mu et al., 2011).
We estimated monthly LAI by computing the mean of the
8-day daily values for each month, and finally, we
extracted individual time series data from the grid cells
containing each tower site.

Evapotranspiration correction

The latent heat (LE) flux represents energy absorbed for
water to change from the liquid state to vapour phase
without a change in temperature through the ET process.
The ET rates were calculated from LE with a conversion
factor, constant of heat vaporization. According to
literature (Wilson et al., 2002; Foken, 2008), the LE can
be underestimated by as much as 20% because of a lack of
energy balance closure. Previous studies suggest that the
incomplete energy closure issues were mainly caused by

Figure 3. An overview of research methods for database development and analysis.
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inaccurate estimation of available energy, incomplete
energy balances (e.g. heat storage term is often neglected)
(Mayocchi and Bristow, 1995), a changing source area of
turbulent fluxes (Schmid, 1997; Shao et al., 2014), and
large mobility of the turbulent flux and flux sampling errors
(Mahrt, 1998).

We corrected the daily ET estimates using the method by
Twine et al. (2000) to account for the energy conservation
discrepancy in eddy flux measurements. This method
redistributed the residual of available energy (Rn minus G)
and the sum of latent heat and sensible heat (H+LE) back
to both LE and H by maintaining the Bowen Ratio (H/LE)
such that

ETc ¼ ET� Rn� G

H þ LE

where ETc is the corrected daily ET (mm), Rn is the net
radiation (MJ m� 2), G is the daily soil heat flux (MJ m� 2),
H is the sensible heat flux (MJ m� 2), and LE is the latent
heat flux (MJ m� 2).

Potential evapotranspiration estimation

Potential evapotranspiration is widely used in modelling
actual ET and streamflow, and it sets an upper limit of
actual ecosystem water loss assuming unlimited soil water
availability (Lu et al., 2003; Lu et al., 2005; Sun et al.,
2011a). Hamon’s (1963) PET method was used in this
study because of its simplicity and wide use (Vörösmarty
et al., 1998; Lu et al., 2005). The Hamon PET method
computes daily ET based on air temperature and daytime
length

PET ¼ 0:1651�DAY� 216:7�es
ta þ 273:3

where PET is the daily potential ET (mm), DAY is the day
length in multiples of 12 h calculated as a function of
latitude (Lat) and Julian day, es is the saturation vapour
pressure at a given temperature, and ta is the mean air
temperature (°C).

The saturation vapour pressure, es, is computed as
follows:

es ¼ 6:108�e
17:2694�ta
ta þ 237:3

The day length is computed as follows:

DAY ¼ 2�acos

�
�1�tan Lat�0:0175ð Þ

�tan 0:4093�sin
2*3:1415*DoY

365:0

� �
� 1:405

� ��
=3:14159

where DoY is the Julian day of the year ranging between 1
and 366.
The FAO grass reference ET (ETo) method has been

widely used to characterize local meteorological conditions
or PET in reference to a standard land cover, such as a
short grass (Allen et al., 1994). Daily ETo is calculated by
the process-based Penman–Monteith ET equation param-
eterized for a hypothetical well-watered grass that has a
0.12m canopy height, a leaf area of 2.8, a bulk surface
resistance of 70 sm�1, and an albedo of 0.23 as estimated
as follows:

ETo ¼
0:408Δ Rn� Gð Þ þ γ C

Tþ273 u2 es � eað Þ
Δþ γ 1þ 0:34μ2ð Þ ;

where ETo is the grass reference ET (mmday�1), Δ is the
slope of the saturation water vapour pressure at air
temperature T (kPa °C�1),

Δ ¼ 2503
e

17:27T
Tþ237:3

T þ 237:3ð Þ2 ;

Rn is the net radiation (MJm�2), G is the soil heat flux
(MJm�2), γ is the psychrometric constant (kPa °C�1), es is the
saturation vapour pressure (kPa), ea is the actual vapour
pressure (kPa), u2 is the mean wind speed (ms�1) at 2m
height, andC is the unit conversion factor with a value of 900.

Development of monthly ET model using regression
analysis

The global flux sites represent contrasting biomes under a
wide range of climatic regimes and management conditions
(i.e. irrigated croplands and plantation forests). After
conducting data quality assessment and quality control,
we selected the best independent variables for predicting
ET using Pearson correlation metrics. We examined
different combinations of biophysical variables to achieve
the best model fit for each of the eight ecosystem types.
The multivariate linear regression procedures in the SAS
9.2 software (SAS Institute Inc., 2008) were used for model
development. Combinations of key biophysical factors
were examined to achieve the best model fit. For each
regression model, collinearity issues among independent
variable were assessed by computing the variance inflation
factor (VIF; Marquard, 1970). A VIF above 5 indicated
collinearity among independent variables, and the variables
would be removed from the linear regression models.
We created three sets of empirical ET models to meet the

requirements of different types of potential users and test
whether a model with higher complexity improves
predictability. Type I models were developed using the
most significant variables (Rn, P, LAI, and PET) that
potentially maximized model accuracy. Type II models

MONTHLY ET MODELS
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were constructed using only three biophysical variables (P,
PET, and LAI) that are readily available from standard
weather monitoring stations and regional remote sensing
products (LAI) (Sun et al., 2011a, b). Type III models were
similar to Type II except that PET variable was replaced
with ETo, calculated by the more robust but also more data-
demanding FAO reference ET equation. We evaluated the
model performance at two different levels: overall model
performance by biome type across all sites, and site-specific
model performance at two forest sites. To assess model
performance by biome type, we compared our models
separating land cover types with models by lumping all land
cover types (Sun et al., 2011a, b). To assess site-specific
model performance, we applied the generalized ET model
developed for evergreen needleleaf forest (ENF) to two flux
sites with contrasting climatic characteristics and examined
potential modelling errors. We used coefficients of determi-
nation (R2) and root of mean square error (RMSE) to
quantitatively evaluate model performance.

RESULTS

Long-term mean annual ET rates for any ecosystems are
primarily controlled by water (P) and energy (PET)
availability. This section presents both mean annual and
seasonal relationships among ET, PET, and P using the
Budyko (1974) framework. We used the Hamon PET for
this analysis after we have found that this method was more
dependable for more ecosystems than the ETo had. Although
PET and ETo were highly correlated on average across all
sites, the ETo method gave about 30% higher estimates of
ET than the Hamon PETmodel (not shown). Across all sites,

the mean annual ET was 474mm, while the mean annual
PET and ETo was 1030 and 750mm, respectively.

The ET, PET, ETo, and P relationship at annual scale

Annual P and PET rates varied dramatically among the
biomes. The majority of evergreen broadleaf forest (EBF)
was found in a tropical climate with a mean annual P of
1330mm and mean PET of 1087mm. In contrast,
evergreen needleleaf forest (ENF) had a much wider range,
with PET ranging from 450 to 1300mm (mean=635mm)
and P from 166 to 1907mm (mean=785mm). Deciduous
forest (DB) had the highest range in P (250–2500mm),
with a mean of 908mm and PET from 500 to 1144mm
(mean PET=702mm). Fewer flux sites were found in
mixed forest (MF); the 12 sites examined by this study had
a very narrow range in PET (521–684mm) with a mean of
572mm, but a large P ranging from 93 to 1600mm
(mean=727mm). Grassland sites had a wide range of P
(~236–1316mm) with a mean of 750mm, and a large
range of PET (mean=687mm) varying from 313 to
1032mm. There was substantial overlap in the ranges
of P and PET between grassland and DB. The 31 cropland
(CRO) sites were found in a warmer climate
than grasslands and also had a wide range of PET
(551–1453mm, mean = 788) and P (333–1389 mm,
mean=774mm). Similar to grasslands, the shrublands
had a large range in P, varying from 123 to 1500mm. The
ranges of P and PET for shrublands (CS and OS) (mean
P=594mm, PET=781mm) and savannas (SAV) sites
(mean P=673mm, PET=1134mm) overlapped with those
for grasslands. Annual PET rates exceeded 400mm for all
ecosystems but one (CN-Ham, Haibei Alpine Tibet site in

Figure 4. Distribution of mean annual PET and precipitation. CRO, cropland; CS, closed shrubland; DB, deciduous broad leaf forest; EBF, evergreen
broad leaf forest; ENF, evergreen needleleaf forest; GRA, grassland; MF, mixed forest; OS, open shrubland; SAV, savannas.
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China) where PET was only 313mm and mean air temp
was �2.2 °C (Figure 4).

Annual total ET exceeded P at 35 out of the 137 sites
(Figure 5a and b). Notably, the ET of the three cropland
sites (ES-ES2 in Spain, IT-Cas in Italy, and US-IB1 in the
US) (889–1048mm)wasmuch higher than P (553–623mm)
(Group 1, Figure 5). The three sites received substantial
irrigation (Cheng et al., 2011), leading to much higher ET
compared with P. Among the other three forest sites in
Group 1 (Figure 5),Wisconsin US-Wi1 and US-Wi2 located
in the lowlands had an ET of 776 and 673mm, respectively.
The P for the US-Wi1 and US-Wi2 was only 284 and
297mm, respectively. These two sites likely received
supplemental groundwater to meet the ET demand. The

other forest site (CN-Bed, Beijing, China) in Group 1 was a
highly productive poplar plantation that received irrigation
in the spring when drought occurred (Zhou et al., 2013).
We also found that ET exceeded Hamon PET at 22 out

of the 137 sites, particularly US-Wi1, two grassland sites in
Italy (IT-MBo and IT-Mal), an evergreen needleleaf forest
(ENF) site in Nebraska (US-NR1), a pine plantation in
North Carolina on coastal wetlands (NC2) (Sun et al.,
2010), and an alpine grassland in China (CN-HaM).

The ET, PET, ETo, and P relationship at the growing
season scale

The ET fluxes for vegetated surfaces were the highest
during the growing season. Total ET in the growing season

(b)
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1.0
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Water supply limit (ET=P)
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3.0

Figure 5. A comparison of (a) mean annual ET versus precipitation (P), and (b) mean Evaporative Index (ET/P) and Dryness Index (PET/P) in the
Budyko (1974) framework, for all FLUXNET sites used in the analysis. CRO, cropland; CS, closed shrubland; DB, deciduous broad leaf forest; EBF,

evergreen broad leaf forest; ENF, evergreen needleleaf forest; GRA, grassland; MF, mixed forest; OS, open shrubland; SAV, savannas.
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exceeded P at about 60% of the study sites (Figure 6).
When growing season ET exceeded P, ecosystem water use
was supplied not only by growing season P but also by soil
water storage, the ‘old water’. Evergreen needleleaf forest
(ENF) and grassland (GRA) sites spread almost equally
around the 1:1 line, suggesting that there sites have a wide
range of growing season climatic regimes. Mixed forest
(MF), closed shrubland (CS), and cropland (CRO) sites
were mostly found with ET exceeding P. A few CRO sites
had much higher ET than P in the growing season,
presumably due to irrigation. As expected, growing season
P exceeded ET greatly for evergreen broad leaf forest
(EBF) in a wet tropical environment. Most interestingly,
ET was close to or greater than P at all deciduous broad
leaf forest (DB) sites except one, suggesting that soil water
storage was more important for supplying ET demand in
DB ecosystems than in other ecosystems over the growing
seasons.

Key environmental controls on ET

Energy availability (PET or Ta, Rn), atmospheric dryness
(VPD), and plant biomass (LAI) were the top five
influential variables for predicting ET at the monthly scale
across all sites (Table I). Interestingly, water availability as
represented by total precipitation (P) did not correlate well
with ET. As expected, overall, the energy terms (Rn, PET,
and Ta) were highly correlated among themselves,
moderately correlated with LAI but weakly with VPD
(Table I).
When examining the data by ecosystem type, there were

similarities and differences among the key variables for
explaining the variability of measured ET (Table II). Rn
and LAI correlated consistently well with ET for all

ecosystems. Precipitation (P) was not as influential as other
five variables (Pearson correlation coefficients< 0.32) for
all biomes. For shrublands, energy and air humidity
indicators (Ta, PET, and Rn) and VPD, respectively, did
not correlate with ET. Instead, LAI could explain 77% of
the variability of ET.
Stepwise regression analysis by ecosystem type re-

vealed complex relationships between ET and environ-
mental controls (Table III). The environmental factors
could be represented by a different set of key independent
variables for different ecosystems. For example, PET
alone explained 79% (p< 0.0001) of the variability of ET
for mixed forest (MF). In contrast, LAI and VPD (total
partial R2 = 0.69) were most useful for estimating ET of
Savannas ecosystem.

Monthly ET models. The Type I regression models for
each land cover type (Table IV) consist of the top three

Figure 6. Distribution of growing season mean ET and precipitation. CRO, cropland; CS, closed shrubland; DB, deciduous broad leaf forest; EBF,
evergreen broad leaf forest; ENF, evergreen needleleaf forest; GRA, grassland; MF, mixed forest; OS, open shrubland; SAV, savannas.

Table I. Pearson correlations betweeb evapotranspiration (ET)
and indpendent variables for all biomes represenetd by the the

entire FLUXNET dataset.

ET Ta VPD PET P Rn LAI

ET 1.00 0.66 0.34 0.71 . 0.75 0.50
Ta 0.66 1.00 0.74 0.93 . 0.73 0.42
VPD 0.34 0.74 1.00 0.78 . 0.61 .
PET 0.71 0.92 0.78 1.00 . 0.81 0.41
P . . . . 1.00 . .
Rn 0.75 0.73 0.61 0.81 . 1.00 0.43
LAI 0.50 0.42 . 0.41 . 0.43 1.00

Only correlation coefficients greater than 0.3 or less than �0.3 are shown.
Ta, air temperature; VPD, vapour pressure deficit; PET, potential
evapotranspiration; P, precipitation; Rn, net radiation; LAI, leaf area
index.
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most significant independent variables (p<0.03) as
identified in Table III. The three variables in each of
models did not have co-linearity as determined by VIF
values (<5.0). The models had R2 varying from 0.66 to
0.86, and RMSE ranging from 14.2 to 23.9mmmonth�1.

Similar to the Type I models, the R2 values for Type II
models varied from 0.66 to 0.80 (Table V). However, the
Type II models had much lower R2 values for both GR and
BF biomes. The mean RMSE for the Type I models
(mean=17.0 with a range of 13.3–23.9mmmonth�1) was
almost identical to that for the Type II models (mean =16.6
with a range of 11.1–23.7mmmonth�1). For the Type II
models, the selected variables (PET, LAI, and P) were
highly significant (p< 0.0001) except for P for DB, EBF,
and MF. PET was the only significant independent variable
for predicting ET for MF.
Compared with the Type I and Type II models, the Type

III models had slightly lower R2, varying from 0.49 for
EBF to 0.77 for MF. However, the R2 for SVA (0.74) in the
Type III model was much higher than those in Type I
(0.66) and Type II (0.68) models. The RMSE for the Type
III models was 17.0 (11.8–23.3mmmonth�1), almost
identical to the Type II model. In contrast to the Type I
and Type II models, all three variables (ETo, LAI, and P) in
the Type III models were highly significant (p<0.001)
for all biomes except for EBF where LAI was not a
significant factor.

Table III. The most significant variables contributed to evapotranspiration with their partial R2 values of different land cover types.

Land cover type Partial R2 of significant variables

Ta PET LAI Rn P VPD n

Shrubland . 0.04 0.60 0.19 . . 123
Cropland . 0.67 0.01 0.04 . 0.03 609
Grassland . 0.04 0.04 0.75 . 0.01 802
Deciduous broadleaf forest . 0.73 . 0.04 . 0.06 636
Evergreen needle leaf forest . 0.64 0.04 0.05 0.02 . 1360
Evergreen broad leaf forest 0.01 0.76 . 0.11 . . 190
Mixed forest . 0.79 . 0.04 . . 261
Savannas . 0.05 0.50 0.16 . 0.19 36

All R2 have p values less than 0.0001; only top four significant variables listed. Ta, air temperature; VPD, vapour pressure deficit; PET, potential
evapotranspiration; P, precipitation; Rn, net radiation; LAI, leaf area index.

Table IV. Type I models by land cover type developed using the three most significant variables.

Land cover type Model by land cover (Type I)

Model by land cover Lump model

nRMSE R2 RMSE R2

Shrubland ET= 0.51 + 0.03 * PET+ 14.73 * LAI + 0.08 *Rn 14.0 0.79 25.9 0.39 220
Cropland ET= 0.87 + 0.19 *Rn+ 13.99 * LAI + 0.06 * P 23.9 0.73 17.3 0.73 655
Grassland ET= 5.55 + 7.23 * LAI + 0.20 *Rn 16.3 0.79 15.8 0.73 835
Deciduous forest ET =�14.22 + 0.74 * PET+ 0.10 *Rn 22.2 0.77 15.9 0.77 788
Evergreen needle leaf forest ET = 3.00 + 0.30 * PET+ 3.99 * LAI + 0.09 *Rn 17.1 0.71 18.2 0.69 1507
Evergreen broad leaf forest ET =�0.15 + 0.47 * PET+ 0.13 *Rn 13.3 0.86 11.6 0.85 246
Mixed forest ET =�8.76 + 0.95 * PET 14.8 0.80 12.1 0.84 274
Savannas ET=�8.07 + 33.46 * LAI + 0.07 *Rn 14.0 0.66 35.15 0.04 36

RMSE, root of mean square error; ET, evapotranspiration; PET, potential evapotranspiration; P, precipitation; Rn, net radiation; LAI, leaf area index.

Table II. Pearson correlation coefficient (PCC) between monthly
evapotranspiration and biophysical parameters for different land

cover types.

Land cover type Ta PET LAI Rn VPD P

Shrubland 0.54 0.6 0.77 0.5 . .
Cropland 0.74 0.82 0.59 0.81 0.60 .
Grassland 0.71 0.79 0.50 0.86 0.51 .
Deciduous broadleaf forest 0.77 0.85 0.66 0.82 0.62 .
Evergreen needle leaf forest 0.78 0.80 0.57 0.79 0.65 .
Evergreen broad leaf forest 0.86 0.87 0.29 0.87 0.62 .
Mixed forest 0.79 0.89 0.71 0.86 0.79 .
Savannas . . 0.71 0.49 . .

Only correlation coefficients greater than 0.3 or less than �0.3 are shown.
Ta, air temperature; VPD, vapour pressure deficit; PET, potential
evapotranspiration; P, precipitation; Rn, net radiation; LAI, leaf area
index.

MONTHLY ET MODELS

Copyright © 2015 John Wiley & Sons, Ltd. Ecohydrol. (2015)



Lumped ET models without separating land cover type

One of the main goals for this study was to test whether
separating land cover type would improve model accuracy
over ‘lumped models’ that were developed by pooling all
data together. When pooling the entire datasets for all land
cover types, the Type I models that consisted of three most
significant variables had the following form:

ET ¼ 0:16 þ 0:51 PET þ 0:1 Rn

R2 ¼ 0:69; p < 0:0001; RMSE ¼ 21:4 mm month�1

(1)

The Type II model took the following form:

ET ¼ � 4:79 þ 0:75PET þ 3:92LAI þ 0:04P

R2 ¼ 0:68; p < 0:0001; RMSE ¼ 18:1 mm month�1

(2)

The Type III model had the following form:

ET ¼ � 2:22 þ 0:30*ETo þ 6:32*LAI þ 0:09*P

R2 ¼ 0:49; p < 0:0001; RMSE ¼ 22:6 mm month�1

(3)

where PET is calculated by the Hamon’s method, ETo is
the FAO crop reference ET, and VPD (hPa) is calculated
from relative air humidity and air temperature.
Model collinearity analysis showed that the VIF values

of independent variables varied from 1.2 to 4.4, indicating
no co-linearity issues among the independent variables, and
the three lumped models were robust.

Model evaluation

We evaluated the model strength in two broad ways. We
examined whether ET models by ecosystem types provide
overall improvement to predictions by generalized models
(Type I, II, and III) by lumping all data (Equations (1)–(3).
Comparisons of model performance in terms of R2 and
RMSE are presented in Tables IV, V, and VI. We also
examined the accuracy of a land cover-specific ET model
to predict ET at two conifer forest sites in California and
Florida with contrasting climates and tree species.

Land cover-specific models versus a generalized model

When applying the generalized model (Type I, Equation
1) to each biomes, similar R2 values for the majority of

Table V. Type II models by land cover type developed using three commonly measured biophysical variables.

Land cover type Model by land cover (Type II) Model by land
cover type

Lumped model

nRMSE R2 RMSE R2

Shrubland ET=�3.11 + 0.39 * PET+ 0.09 * P + 11.127 * LAI 12.5 0.80 18.8 0.64 193
Cropland (CRO) ET=�8.15 + 0.86 * PET+ 0.01 * P + 9.54 *LAI 20.9 0.70 17.5 0.68 653
Grassland (GR) ET=�1.36 + 0.70 * PET+ 0.04 * P + 6.56 *LAI 16.8 0.66 16.9 0.66 803
Deciduous broad leaf forest (DB) ET=�14.82 + 0.98 * PET+ 2.72 * LAI 23.7 0.74 17.8 0.73 754
Evergreen needle leaf forest (ENF) ET= 0.10 + 0.64 * PET+ 0.04 * P + 3.53 * LAI 17.8 0.68 17.1 0.68 1382
Evergreen broad leaf forest (EBF) ET= 7.71 + 0.74 * PET+ 1.85 * LAI 16.8 0.76 15.9 0.74 263
Mixed forest (MF) ET=�8.763 + 0.95 * PET 13.1 0.79 12.6 0.79 259
Savannas (SVA) ET=�25.66 + 0.18 * PET+ 0.10 * P + 44.63 * LAI 11.1 0.68 34.2 0.00 36

RMSE, root of mean square error; ET, evapotranspiration; PET, potential evapotranspiration; P, precipitation; LAI, leaf area index.

Table VI. Type III models by land cover type developed using three FAO grass reference ET (ETo) and two commonly measured
biophysical variables (precipitation and leaf area index).

Land cover type Model by land cover (Type III) Model by land
cover type

Lumped model

nRMSE R2 RMSE R2

Shrubland ET= 0.14 * ETo + 0.11 * P + 12.42 * LAI 12.1 0.73 14.8 0.53 213
Cropland (CRO) ET=�8.6 + 0.44 *ETo + 0.07 * P + 13.12 *LAI 20.5 0.68 16.9 0.67 584
Grassland (GR) ET= 0.32 * ETo + 0.075 * P + 10.28 * LAI 18.6 0.61 11.9 0.59 778
Deciduous broad leaf forest (DB) ET=�12.4 + 0.50 * ETo + 0.09 * P + 2.46 *LAI 20.9 0.64 16.2 0.61 874
Evergreen needle leaf forest (ENF) ET=�4.0 + 0.34 *ETo + 0.04 * P + 6.09 * LAI 15.2 0.70 12.8 0.68 1880
Evergreen broad leaf Forest (EBF) ET= 12.7 + 0.44 *ETo + 0.09 * P 23.3 0.49 14.4 0.42 197
Mixed forest (MF) ET=�8.5 + 0.39 *ETo + 0.04 * P + 4.22 * LAI 11.8 0.77 10.7 0.74 326
Savannas (SVA) ET=�31.0 + 0.15 * ETo + 0.05 * P + 47.67 * LAI 13.5 0.74 19.9 0.10 35

RMSE, root of mean square error; ET, evapotranspiration; PET, potential evapotranspiration; P, precipitation; LAI, leaf area index.
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the biomes were found except for shrublands and
savannas (Tables IV–6). For example, the lumped Type
I model had much lower R2 (0.39) and higher RMSE
(25.9) than the land cover-specific model (R2 = 0.79;
RMSE=14.0mm) for shrublands (Table IV). Similarly,
the lumped Type II models had much lower R2 (0.64)
and higher RMSE (18.8mm) than land cover-specific
model (R2 = 0.80; RMSE = 12.5 mm) for shrubland
(Table V). This was true for Shrubland for Type III
model as well (R2 = 0.73 for land cover-specific model vs
R2 = 0.53 for lumped model) (Table VI). For savannas,
all three lumped models had very little predictive power
(R2< 0.1; RMSE> 20mmmonth�1).

All data taken together, the land cover-specific models
had slightly higher R (0.72) than the generalized simple
model (Type II) as represented by Equation 2 (R2 = 0.68)
(Figure 7a and b). The land cover-specific models therefore
explained slightly higher variance of ET than the
generalized simple model. Similar results were found for
other two models (not shown).

Model evaluations using two evergreen needleleaf forest
(ENF) sites with a contrasting climate

To test whether the Type I models (Table IV) that used the
three most influential variables might not always perform
better than the simpler Type II models (Table V) or the

(a)

(b)

Figure 7. A comparison of measured and predicted ET using (a) a generalized Type II ET model and (b) models developed by land cover type.

MONTHLY ET MODELS

Copyright © 2015 John Wiley & Sons, Ltd. Ecohydrol. (2015)



most data-demanding Type III model, we evaluated two
sets of ET models developed for evergreen needleleaf
forest (ENF) at two eddy flux sites with contrasting
climate and tree species: the Blodgett Forest (US-Blo)
located in northern California (N38.89, W�120.63)
(Goldstein et al., 2000; Thornton et al., 2002) with
measurements from 2000 to 2006 and a young slash pine
(Pinus elliottii) plantation forest site (US-SP2) (locally
called Mize track) located in north-central Florida
(N29.76, W82.24) (Bracho et al., 2012). The US-Blo
was dominated by vigorously growing (LAI> 4.0) young
ponderosa pine (Pinus ponderosa). The climate was
characterized as having a warm and dry summer, but
wet winter (Figure 8). Thus, ET did not positively
correlate with P at this site (R=�0.37), but highly
correlated to PET (R=0.93) or ETo (R=0.95). In contrast,
the other recently established evergreen forest site (US-
SP2) located in the humid north-central Florida was
dominated by 2-year old stands in 2000. However, LAI
for this site increased dramatically from less than 1.0 in
2001 to about 6.0, reflecting rapid tree growth and stand
establishment (Bracho et al., 2012). The site had a low P
and ET in winter and high P and ET in the summer
(Figure 10), and therefore, monthly ET was highly
correlated with PET (R=0.78) and ETo (R=0.75) and
weakly with P (R=0.25).
Overall, all models captured the monthly ET patterns

well in spite of the large inter-annual variability of P at the
US-Blo site (Figure 8). The Type I models performed
better that both Type II and Type III models during the
early growing season (April–June). Both Type II and Type

III models underestimated ET during the growing seasons.
The underestimation of ET by the Type II and III models
was likely caused by the fact that actual measured ET
from this site exceeded PET and ETo rates that were
computed from a temperature-based PET model or using
biological parameters for grass land surface (Tables V
and VI). In addition to air temperature, other parameters
such as Rn and stomatal conductance are likely
important in controlling ET at the US-Blo site (Table IV).
All models substantially underestimated ET in the peak
growing season (July–August) at this site for some years,
particularly 2005 and 2006 (Figure 9). The process-
based Biome-BGC model also failed to match the high
ET rate at this site in a cross-site model comparison
study (Thornton et al., 2002). The differences of ET
estimate among the three models were the lowest in the
fall season and winter, highest in the spring, and
the peak growing season of April–July (Figure 9). The
differences among the three models were generally
consistent over the seven year period (2000–2006)
with a large annual variability in precipitation
(1019–1851mm).
In contrast, all models captured the monthly ET patterns

at the Florida US-SP2 site fairly well, particularly in the
dormant season (November–April) (Figures 10 and 11).
Overall, the simplest Type II model for ENF performed
best (R2 = 0.51, 9% underestimate). The Type II and Type
III models performed equally well, and both
underestimated ET rates during the growing seasons,
however. The largest differences among the three types
of models were found during the peak growing season

Figure 8. Mean monthly measured ET, P, and modelled PET and ET for a ponderosa pine plantation at Blodgett Forest for the period of 2000–2006 in
California, western United States.
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(Figures 10 and 11). ET closely followed PET (R=0.78)
(Figure 10) on this coastal plain landscape where
groundwater was abundant and soil water stress was rare.
The underestimation of ET by the Type I and Type II
models suggested that the radiation-dominated ET model
or reference ET model could not fully account for forest ET
in a humid environment. A combination of LAI and PET
might be best predictors for southern forest ET (Gholz and
Clark, 2002; Sun et al., 2010). Similar to the California site
as discussed earlier, the differences of estimated ET were
greatest during the growing season from May to September

(Figures 10 and 11), suggesting that the biological controls
to ET were not well captured in the Type I and III models.
Although the Type II models provided good estimates for
mean ET during the study period, they overestimated ET
during the spring for the first three years but
underestimated ET for almost all months during 2003–
2004. The Type III models however performed best for the
non-growing season. In the model evaluation, we used
MODIS LAI for each site but did not use locally measured
LAI to be consistent with model development and future
applications.

Figure 10. Mean monthly measured ET, P, and modelled PET and ET for slash pine plantation in north-central Florida for the period of 2000–2004 in
the southeastern United States.

Figure 9. Monthly measured ET, P, and modelled PET and ET for a ponderosa pine plantation at Blodgett Forest for the period of 2000–2006 in
California, western United States.
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DISCUSSION

The FLUXNET network offers the best global ET data and
opportunities to contrast monthly and annual scale water
balance across multiple ecosystems (Baldocchi and Ryu,
2011). Our study showed that grasslands and shrublands
were not necessarily found in areas with low precipitations,
and ecosystem characteristics varied within each land cover
type. The combinations of precipitation and ET determined
water availability that eventually influenced ecosystem
structure (e.g. biomass) functions (e.g. water yield). Our
study reinforced the notion (Sun et al., 2011a, b) that
ecosystem water use (ET) and site hydrology were
controlled by ecosystem characteristics and local climate
(i.e. LAI, Ta or PET, Rn). These key factors explained the
majority (60–90%) of the ET variability at the monthly
scale.
Although the number of eddy covariance flux sites has

dramatically increased exponentially in the past decade, the
sample size of the FLUXNET used in this study for model
development might still be limited and biased towards
more mature ecosystems with little disturbance; therefore, a
generalized model even for one land cover type may be
biased. In addition, a generalized model may work well on
average but can be biased during extreme conditions.
Despite the potential biases, ecosystem level ET can be
estimated with reasonable accuracy (R2> 0.60) using the
models developed in this study with common environ-
mental variables.

Environmental controls on monthly ET

It is well known that long-term mean ET for a region is
controlled by precipitation and PET as described by the
Budyko (1974) framework (Figure 5b) (Zhang et al., 2001,

2004). The effects of vegetation characteristics (e.g. rooting
depth) had significant effects on annual ET at the site to
small watershed scale (Zhang et al., 2001; Williams et al.,
2012) but relatively minor effects over large areas (Oudin
et al., 2008; Peel et al., 2010; Sanford and Selnick, 2012).
Our results generally support these claims at the monthly
temporal scale. However, our study clearly showed that
human disturbances such as irrigation altered the general
long-term relationships among ET, PET, and P as
presented in Budyko (1974) (Figure 5b).
Evapotranspiration analysis at the monthly scale offered

new insights about broad biophysical controls on seasonal
ET for the world’s major ecosystem types. Overall, P or
soil moisture content explained very small portion of the
variance in ecosystem ET at the monthly scale, particularly
for forests with high LAI and deeper roots with access to
deep soil water storage. The insensitivity of ET to P
indicated that these forests were rarely under water stress at
the monthly scale. This finding was consistent with reports
that mature forest ET was less variable than that of
environmental conditions (Stoy et al., 2006). Shrubland
and grassland ecosystems showed higher responses to soil
water stress, which was consistent with the findings of Stoy
et al. (2006). The influence of P was not as large as that of
LAI or Rn, suggesting that the variability of ET was mainly
controlled by canopy structure (LAI) and energy (Rn)
availability. A study by Nagler et al. (2007) found that for
sparsely vegetated grassland and shrubland, ET was
strongly correlated to leaf biomass (Enhanced Vegetation
Index), moderately related to P, and weakly linked to Rn
and Ta. The ‘crop coefficient’, ET/PET, can be readily
predicted by LAI (Sumner and Jacobs, 2005). Our study is
consistent with Nagler et al. (2007) in that LAI was the
best predictor of ET for shrubland sites. An added benefit

Figure 11. Monthly measured ET, P, and modelled PET and ET for slash pine plantation in north-central Florida for the period of 2000–2004 in the
southeastern United States.
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of using LAI as an independent variable is that LAI can be
used to scale-up ground ET measurements to the landscape
scale in arid regions. The importance of Rn in affecting ET
perhaps reflects the diversity of the shrub or grass sites
across large climatic gradients. At the site level, LAI
represents an overall integration of vegetation resource
availability (i.e. soil water, absorbed light, and nutrition
status) and ecosystem productivity, and thus is likely to
dominate the control on ET (Chen et al., 2002; Nagler
et al., 2007), particularly for deciduous forest (Xie et al.,
2013), natural grasslands (Yang et al., 2007; Zhou et al.,
2010; Yang and Zhou, 2011; Zheng et al., 2011), and
herbaceous wetlands such as reed marsh (Zhou et al., 2010)
that have dynamic phenology. Ecosystem structure infor-
mation including LAI is more useful in explaining ET and
water balance differences than land cover type.

Modelling ET under extreme drought conditions

Like any empirical model, our regression models were
developed for normal climatic conditions and represented
the mean ET controls across each ecosystem type. Thus,
when applying the model to a particular site with unique
vegetation structure (e.g. forest stand age not represented in
the flux network site) or to a site for a particular time period
(e.g. extreme droughts), the model may result in errors. For
example, under specific circumstances such as certain dry
regions where unique vegetation and climate are present,
soil water stored in the top 10 cm of soil is the only water
source to meet the demand of plants for long periods
without precipitation (Kurc and Small, 2004). Thus, soil
water storage coupled with other climatic variables controls
ET of the current month, not necessarily the precipitation
of the current month (Seneviratne et al., 2010). In such
cases, underestimation errors may occur when using our
modelling approach without considering soil moisture
under extremely dry conditions. Nagler et al. (2007)
considered inter-annual lags of precipitation to account for
effects of soil water storage on ET. During model
development in this study, we also tried to use total
precipitation of previous month to account for precipitation
lag time on ET. However, improvements by this approach
were not always achievable for all sites. Soil moisture was
measured only at the top 15 cm in majority of the
FLUXNET sites and was found not a good factor in our
initial analysis, and thus, later, we dropped this variable. In
addition, our integrated hydrological modelling suggests
that fully accounting soil moisture stress is essential to
accurately model watershed scale ET and streamflow
(Caldwell et al., 2012).

Model evaluation and limitation of the ET models and flux
data. This study advances the lumped ET modelling
approach previously presented by Sun et al. (2011a,

2011b) that used only 13 sites with limited ecosystem
types represented. Here, we confirm that ecosystem-
specific models are preferred in regional ecosystem flux
upscaling and predictions (Xiao et al., 2012, 2014),
especially for shrub lands and savannas. However,
differences in species composition, plant stomatal conduc-
tance, phenology, age, and soil properties within the same
ecosystem type may still contribute to modelling errors.
Future studies should consider ecosystem properties such
as canopy conductance and plant hydraulic conductivity at
the species level. Other ET processes such as root hydraulic
redistribution have not been included in a monthly scale
model, but their cumulative effects can be significant
(Domec et al., 2012b).
There are a few known sources of errors in measuring

LE (i.e. ET) by the eddy covariance method (Leuning
et al., 2012), including issues related to equipment that
measures surface temperature (Kalma and Jupp, 1990) and
wind speed (e.g. ultrasonic anemometers) (Nakai and
Shimoyama, 2012). Along with the inevitable measure-
ment errors, unknown disturbance, and instrument failure,
deficiency of gap-filling techniques all contribute to the
uncertainty of LE and thus accumulated monthly ET
values. However, it is unclear if the systematic errors
associated with eddy covariance instruments are also
important for ET estimates at the ecosystem/landscape
scale. A comprehensive review by Foken (2008) concluded
that the eddy covariance method itself is designed for
measuring energy fluxes for small, homogenous areas, and
ET estimates are generally underestimated in most cases.
Thus, Foken argued that the energy imbalance issues are
scale problems and not necessarily instrument errors (also
see Shao et al., 2014). In our study, the energy closure was
88±1% for 6725 site-months records and was consistent
with the findings of Wilson et al. (2002). The incomplete
energy balance closure at FLUXNET sites caused under-
estimation of H and LE at a mean value of 12% in our
study. The correction methods applied in this study to
remedy energy closure errors could not guarantee that the
ET estimates were correct because the method assumed
approximately constant H/LE ratios.
As an essential input to our models, LAI derived from

MODIS has significant uncertainty. Quite often, ground-
based measurements of forest LAI are lower than LAI
derived from MODIS especially for multi-layer forest
stands. The monthly LAI is unrealistic in some cases. For
example, at the Blodgett Forest site in California, LAI fell
abruptly by 1.0 (m2m�2) in September 2001 but elevated
back to a higher value in the following month. This
abnormal phenomenon should not have occurred in an
evergreen forest. Previous research by Cohen et al. (2006)
also found that daily MODIS LAI fluctuated unrealistical-
ly. The misclassification of vegetation types also increased
the errors of estimation when computing LAI by different
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biomes (Pandya et al., 2006). In addition, the MODIS LAI
had 1 km2 resolution that was greater than the size of the
fetch of eddy flux measurements for some sites. For
example, the grassland site of US-DK1 was located at the
Duke Forest open field adjacent to a mature forest. LAI for
this site was registered as high as 5.5 in the summer and
was apparently an over-estimate when comparing with
similar grasslands that had an average LAI of less than 1.0.
In addition, LAI values at the high end of the spectrum
become more problematic because of ‘saturation’ of
greenness. Reported MODIS LAI values for young stands
were often found to be much higher that measured in the
field. For example, the reported LAI for the US-SP2 site in
2000 was greater than 3.5, but the field measured value was
less than 1.0 (Bracho et al., 2012). Such estimation errors
in LAI could introduce uncertainty to model development
and applications. Future studies should combine other
remote sensing techniques, such as high resolution Landsat
imagery to characterize LAI dynamics with a higher spatial
resolution. Bridging the gaps between large spatial and
temporal coverage (e.g. MODIS data) and flux footprint
with spatial and spectral information from multiple sensors
(e.g. Landsat) will improve the estimation of ET for a large
area (Gray and Song, 2012).
Our previous work (Sun et al., 2011a, b) and the current

study show that PET, LAI, Rn, VPD, and water availability
(SWC, P) in some cases are key variables for developing
general predictive models at the monthly scale. However,
because Rn and VPD were not readily available for
regional applications, this study provided another set of ET
models, referred as Type II, so that ET can be estimated at
a regional scale despite the lack of Rn and VPD data. Our
study actually indicated that adding more climate variables
may not improve ET predictions when all ecosystems are
considered (see Equations 1–3).

CONCLUSIONS

This multi-ecosystem study provided general relationships
among terrestrial water loss, energy, water availability, and
vegetation dynamics at a fine temporal scale (i.e. monthly)
– a scale that most regional scale hydrological models use
for global change studies. We developed three types of
empirical ET models that have the potential to estimate
monthly ET at ecosystem-to-regional scales with reason-
able accuracy under mean climate conditions. Ultimately,
the accuracy of ET estimates by modelling depends on data
availability of both climate and biophysical parameters of
ecosystem structure. Embedding the ET models developed
in this study in integrated hydrological model may help to
constrain the accuracy of predicting ET and other
hydrologic fluxes. Accurately estimating seasonal ET
remains to be difficult when ecosystem structure informa-

tion and ET processes for different land covers are not well
characterized. Future studies should evaluate and improve
the monthly ET models by comparing modelling results
with other ET products, such as results from ecosystem
models and upscaling approaches, remote sensing prod-
ucts, sapflow, and soil water balance based estimates in
different regions with different climatic and physiographic
conditions.
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