4,654 research outputs found

    Homologous recombination is unlikely to play a major role in influenza B virus evolution

    Get PDF
    Influenza B viruses cause a significant amount of morbidity and mortality. The occurrence of homologous recombination in influenza viruses is controversial. To determine the extent of homologous recombination in influenza B viruses, recombination analyses of 2,650 sequences representing all eight segments of the influenza B viruses were carried out. Only four sequences were indentified as putative recombinants, which were verified using phylogenetic methods. However, the mosaics detected here were much likely to represent cases of laboratory-generated artificial recombinants. As in other myxoviruses, it is unlikely that homologous recombination plays a major role in influenza B virus evolution

    Dark Matter Spike surrounding Supermassive Black Holes Binary and the nanohertz Stochastic Gravitational Wave Background

    Full text link
    Recently, the NANOGrav, PPTA, EPTA and CPTA collaborations reported compelling evidence of the existence of the Stochastic Gravitational-Wave Background (SGWB). The amplitude and spectrum of this inferred gravitational-wave background align closely with the astrophysical predictions for a signal originating from the population of supermassive black-hole binaries. In light of these findings, we explore the possibility to detect dark matter spikes surrounding massive black holes, which could potentially impact the gravitational-wave waveform and modulate the SGWB. We demonstrate that the SMBH binary evolution induced by the combined effects of GW radiation and the dynamical friction of the dark matter spike exhibits detectable manifestations within the nHz frequency range of the SGWB.Comment: 5 pages, 1 figure. arXiv admin note: text overlap with arXiv:1408.3534 by other author

    Income-based greenhouse gas emissions of nations

    Get PDF
    Accounting for greenhouse gas (GHG) emissions of nations is essential to understanding their importance to global climate change and help inform the policymaking on global GHG mitigation. Previous studies have made efforts to evaluate direct GHG emissions of nations (a.k.a. production-based accounting method) and GHG emissions caused by the final consumption of nations (a.k.a. consumption-based accounting method), but overlooked downstream GHG emissions enabled by primary inputs of individual nations and sectors (a.k.a. income-based accounting method). Here we show that the income-based accounting method reveals new GHG emission profiles for nations and sectors. The rapid development of mining industries drives income-based GHG emissions of resource-exporting nations (e.g., Australia, Canada, and Russia) during 1995–2009. Moreover, the rapid development of sectors producing basic materials and providing financial intermediation services drives income-based GHG emissions of developing nations (e.g., China, Indonesia, India, and Brazil) during this period. The income-based accounting can support supply side policy decisions and provide additional information for determining GHG emission quotas based on cumulative emissions of nations and designing policies for shared responsibilities

    Distinguishing Emission-Associated Ambient Air PM2.5 Concentrations and Meteorological Factor-Induced Fluctuations

    Get PDF
    Although PM2.5 (particulate matter with aerodynamic diameters less than 2.5 μm) in the air originates from emissions, its concentrations are often affected by confounding meteorological effects. Therefore, direct comparisons of PM2.5 concentrations made across two periods, which are commonly used by environmental protection administrations to measure the effectiveness of mitigation efforts, can be misleading. Here, we developed a two-step method to distinguish the significance of emissions and meteorological factors and assess the effectiveness of emission mitigation efforts. We modeled ambient PM2.5 concentrations from 1980 to 2014 based on three conditional scenarios: realistic conditions, fixed emissions, and fixed meteorology. The differences found between the model outputs were analyzed to quantify the relative contributions of emissions and meteorological factors. Emission-related gridded PM2.5 concentrations excluding the meteorological effects were predicted using multivariate regression models, whereas meteorological confounding effects on PM2.5 fluctuations were characterized by probabilistic functions. When the regression models and probabilistic functions were combined, fluctuations in the PM2.5 concentrations induced by emissions and meteorological factors were quantified for all model grid cells and regions. The method was then applied to assess the historical and future trends of PM2.5 concentrations and potential fluctuations on global, national, and city scales. The proposed method may thus be used to assess the effectiveness of mitigation actions

    PM_{2.5} reductions in Chinese cities from 2013 to 2019 remain significant despite the inflating effects of meteorological conditions

    Get PDF
    Air pollution is a major environmental issue in China and imposes severe health burdens on Chinese citizens. Consequently, China has deployed a series of control measures to mitigate fine particulate matter (PM_{2.5}). However, the extent to which these measures have been effective is obscured by the existence of confounding meteorological effects. Here, we use a newly developed reduced-form model that can address emission-driven PM_{2.5} trends and control for meteorological effects to examine the level of PM_{2.5} reduction across 367 cities since the introduction of the Air Pollution Prevention and Control Action Plan (the Plan) in 2013. Our findings show that, on average, the national annual mean level of PM_{2.5} decreased by 34% from 2013 to 2019 after the removal of meteorological effects, about 10% less than the reduction level officially observed. Despite this difference, assuming that current control efforts continue through 2035, the long-term air-quality target of 35 μg/m^{3} as determined by the recently updated Plan will be met

    Impacts of air pollutants from rural Chinese households under the rapid residential energy transition

    Get PDF
    Rural residential energy consumption in China is experiencing a rapid transition towards clean energy, nevertheless, solid fuel combustion remains an important emission source. Here we quantitatively evaluate the contribution of rural residential emissions to PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 μm) and the impacts on health and climate. The clean energy transitions result in remarkable reductions in the contributions to ambient PM2.5, avoiding 130,000 (90,000-160,000) premature deaths associated with PM2.5 exposure. The climate forcing associated with this sector declines from 0.057 ± 0.016 W/m2 in 1992 to 0.031 ± 0.008 W/m2 in 2012. Despite this, the large remaining quantities of solid fuels still contributed 14 ± 10 μg/m3 to population-weighted PM2.5 in 2012, which comprises 21 ± 14% of the overall population-weighted PM2.5 from all sources. Rural residential emissions affect not only rural but urban air quality, and the impacts are highly seasonal and location dependent

    An overlooked nitrogen loss linked to anaerobic ammonium oxidation in estuarine sediments in China

    Get PDF
    Purpose Despite its importance, anammox (anaerobic ammonium oxidation) in estuarine sediment systems remains poorly understood, particularly at the continental scale. This study aimed to understand the abundance, diversity, and activity of anammox bacteria and to determine the main factors influencing the anammox process in estuarine sediments in China. Materials and methods Estuarine sediments were collected from 18 estuaries spanning over 4000 km. Experiments using an 15N–tracer, quantitative PCR, and clone library construction were used to determine the activity, abundance, and diversity of anammox bacteria. The impact of environmental factors on anammox processes was also determined
    • …
    corecore