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Abstract 27 

Purpose Despite its importance, anammox (anaerobic ammonium oxidation) in estuarine sediment 28 

systems remains poorly understood, particularly at the continental scale. This study aimed to 29 

understand the abundance, diversity, and activity of anammox bacteria and to determine the main 30 

factors influencing the anammox process in estuarine sediments in China. 31 

Materials and methods Estuarine sediments were collected from 18 estuaries spanning over 4,000 32 

kilometers. Experiments using an 
15

N-tracer, quantitative PCR, and clone library construction were 33 

used to determine the activity, abundance, and diversity of anammox bacteria. The impact of 34 

environmental factors on anammox processes were also determined. 35 

Results and discussion The abundance of the anammox-specific hydrazine synthase (hzsB) gene ranged 36 

from 1.8×10
5
 ± 3.4 ×10

4 
copies g

-1
 dw to 3.6×10

8 
± 7.5 ×10

7 
copies g

-1
 dw. Candidatus Scalindua, 37 

Brocadia, Kuenenia, Jettenia, and two novel unidentified clusters were detected, with Scalindua 38 

dominating the anammox population. Additionally, the abundances of Scalindua, Kuenenia, and 39 

Brocadia were found to be significantly correlated with latitude. The anammox rates ranged from 40 

0.29±0.15 to 13.68±3.98 nmol N g
-1

 dw h
-1

 and contributed to 2.39-82.61% of total N2 production. 41 

Pearson correlation analysis revealed that the anammox rate was positively correlated with total 42 

nitrogen, total carbon, and temperature, and was negatively correlated with dissolved oxygen (DO). 43 

The key factors influencing the hzsB gene abundance were ammonium concentration, salinity, and DO. 44 

Ammonium concentration, pH, temperature, and latitude were main variables shaping the 45 

anammox-associated bacterial community.  46 

Conclusions Our results suggested that anammox bacteria are ubiquitous in coastal estuaries in China 47 

and underline the importance of anammox resulting in N loss at a continental scale.  48 

 49 

Keywords Activity • Anammox • Estuarine sediments • N loss • Spatial variation 50 
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1 Introduction  52 

Estuarine environments are partially enclosed coastal water bodies with rivers or streams and a free 53 

connection to the open sea, resulting in potential anthropogenic pollutants, particularly inorganic 54 

nitrogen. Anaerobic ammonium oxidation (anammox) couples ammonium oxidation with nitrite 55 

reduction under anaerobic conditions. Based on marine geochemical data, Richard first proposed the 56 

hypothesis that a group of unknown microorganisms might exist in anoxic marine sediments that could 57 

carry out anammox (Richard 1965). Over a decade later, the existence of anammox bacteria was also 58 

predicted via chemical reaction thermodynamic calculations (Broda 1977). Heterotrophic 59 

denitrification was considered to be the only known pathway for the loss of fixed nitrogen to the 60 

atmosphere for decades until the discovery of anammox bacteria in a wastewater treatment plant 61 

(Mulder et al. 1995). Subsequently, anammox bacteria were detected with broad biogeographic 62 

distribution in various natural ecosystems, including marine sediments (Thamdrup and Dalsgaard 2002; 63 

Trimmer and Nicholls 2009; De Brabandere et al. 2014; Shao et al. 2014; Dang et al. 2016), estuarine 64 

sediments (Dale et al. 2009; Dang et al. 2010; Li et al. 2011; Wang et al. 2012; Dang et al. 2013), and 65 

paddy soils (Zhu et al. 2011; Nie et al. 2015; Yang et al. 2015). The relative contribution of anammox 66 

to dinitrogen production can vary widely, with >80% of total N2 production observed in the eastern 67 

tropical South Pacific oxygen minimum zone (OMZ) off the coast of northern Chile (De Brabandere et 68 

al. 2014).       69 

The anammox process is mediated by bacteria belonging to the Candidate Brocadiales order, which 70 

are affiliated with the Planctomycetes phylum (Jetten et al. 2010). Five Candidatus genera of 71 

anammox bacteria have been described: ‘Brocadia’ (Kartal et al. 2008), ‘Kuenenia’(Schmid et al. 72 

2000), ‘Scalindua’ (Schmid et al. 2003; Kuypers et al. 2005), ‘Anammoxoglobus’ (Kartal et al. 2007) 73 

and ‘Jettenia’ (Quan et al. 2008). Each of these genera have been detected in coastal estuaries (Zhu et 74 

al. 2015). The anammox genotype is associated with hydrazine synthase, an intermediate step in the 75 

anammox pathway that synthesizes hydrazine from nitric oxide and ammonium (Kartal et al. 2011). We 76 

used the hzsB gene that encodes one of the hydrazine synthase subunits as a molecular marker (Wang et 77 

al. 2012; Zhu et al. 2013; Yang et al. 2015) in order to determine the abundance and diversity of 78 

anammox bacteria. 79 

China is the largest rice producer in the world, stably consuming ~20 Tg of N based chemical 80 

fertilizers per year (21.6 Tg N in 2005, 23.8 Tg N in 2011; China Agricultural Yearbook, 2012). It was 81 



estimated that nearly 20% of the total nitrogen loss, mostly in the form of nitrate, was transported into 82 

estuarine and coastal ecosystems in the past three decades through riverine discharge and atmospheric 83 

deposition (Cui et al. 2013), resulting in water pollution (e.g., coastal eutrophication, hypoxia, harmful 84 

algae blooms) (Deegan et al. 2012). Thus, estuaries are thought to be a potential sink of nitrogen, 85 

especially nitrate, which is the substrate for many nitrogen cycling processes (e.g., denitrification and 86 

anammox). Several studies have reported anammox processes in estuarine sediments in China (Dang et 87 

al. 2010; Li et al. 2011; Hu et al. 2012; Dang et al. 2013; Zhu et al. 2013), but understanding of N 88 

cycling and the release of fixed N as dinitrogen gas (N2) is lacking due to the high heterogeneity of the 89 

anammox activity in different estuarine and coastal sediments. Therefore, it is crucial to estimate the 90 

contributions of N2 from anammox in different estuarine environments and discover the key factors 91 

governing activity and microbial diversity at a large scale. 92 

On the basis of previous studies (Dang et al. 2010; Li et al. 2011; Hu et al. 2012; Zhu et al. 2013; 93 

Hou et al. 2015), we hypothesize that coastal estuaries are hotspots of anammox processes. Therefore, 94 

we sampled estuarine sediments from 18 rivers (from north to south China) in order to: (i) determine 95 

anammox abundance via qPCR of the hydrazine synthase (hzsB) gene and investigate the community 96 

composition of anammox bacteria; (ii) evaluate the contribution of denitrification and anammox to N2 97 

production using an 
15

N-tracer technique; and (iii) elucidate the impact of environmental factors on 98 

anammox process in estuarine sediments along the coastal zone in China.  99 

 100 

2 Materials and methods 101 

2.1 Sample collection 102 

Surface sediment samples (0-10 cm) of five replicates (ca. 500 g each subsample) were collected 103 

from 18 estuaries during July 2013 (total of 90 subsamples), spanning over 4,000 kilometers of the 104 

coastline and covering a range of climatic and geological zones. The study area and sampling sites are 105 

presented in Table S1. The overlaying water was also collected and kept on ice during transportation. 106 

Sediment samples were stored in sterile plastic bags, sealed and transported to the laboratory on ice. 107 

Each replicate sample was partitioned into three subsamples. One subsample was incubated to 108 

determine denitrification and anammox activities immediately after arrival and another subsample was 109 

used for analysis of chemical properties. The remainder was stored at -80 °C for genomic DNA 110 

extraction and further molecular analysis.  111 



 112 

2.2 Chemical properties of sediment samples 113 

Sediment pH was determined at a soil/MilliQ water ratio of 1:2.5 with a pH analyzer (XL60，Fisher, 114 

USA). Water temperature, dissolved oxygen (DO,) and salinity were measured in situ using a Hydrolab 115 

DS5 multiparameter water quality analyzer (Hach, Loveland, CO, USA). The total N (TN) and total C 116 

(TC) were analyzed by using dry combustion in a C/N analyzer (Vario MAX C/N, Germany). NOx
-
-N 117 

and NH4
+
-N were measured using an ion chromatograph (ICS-3000, USA) after 2M KCl extraction at a 118 

soil/KCl ratio of 1:10 and filtration through a 0.22 μm membrane filter. All analyses were performed in 119 

triplicate for each sample. 120 

 121 

2.3 Anammox and denitrification activity measurement with 
15

N labeled ammonium and nitrate 122 

The rates of anammox and denitrification were measured using the 
15

N-tracer technique
 
(Thamdrup 123 

and Dalsgaard 2002; Risgaard-Petersen et al. 2004) with slight modifications, and their relative 124 

contributions to N2 production were then calculated based on the rates. Briefly, ~3.5 g sediment (wet 125 

weight) was transferred to a 12.0 mL glass vial (Extainer, Labco, High Wycombe, Buckinghamshire, 126 

UK) and filled with N2-purged water. The resulting sediment slurries were pre-incubated for 24 h to 127 

remove intrinsic NOx
-
 and oxygen. After the pre-incubation step, both NO2

- 
and NO3

- 
were under the 128 

detection limit of ion chromatograph (0.05~0.1 ppm and 0.075~0.1 ppm for NO2
- 

and NO3
-
, 129 

respectively). Subsequently, the vials were portioned into three treatments, which were spiked through 130 

the stopper of each vial with 100 μL of N2-purged stock solution of (1) 
15

NH4
+ 

(
15

N-(NH4)2SO4, 
15

N 131 

at.%: 99.14), (2) 
15

NH4
+
+ 

14
NO3

−
, and (3) 

15
NO3

− 
(

15
N-KNO3, 

15
N at.%: 98.15%), resulting in a final 132 

concentration of about 100 μM N. The incubations were performed at a temperature of 25 ± 1
o
C and 133 

blocked at schedule time intervals (0, 3, 6, 12, 24 h) by injecting ZnCl2 solution (200 μL, 7 M) to stop 134 

microbial activity. Concentrations of the produced 
29

N2 and 
30

N2 were measured by continuous flow 135 

isotope ratio mass spectrometry (MAT253 with Gasbench II and autosampler (GC-PAL), Bremen, 136 

Thermo Electron Corporation, Finnigan, Germany). The rate and potential contribution to N2 137 

production of either anammox or denitrification were calculated as described before (Thamdrup and 138 

Dalsgaard 2002; Trimmer et al. 2003). 139 

2.4 DNA extraction and clone library construction 140 

Approximately 0.5 g soil was used for genomic DNA extraction using a FastDNA
TM

 SPIN Kit for 141 



Soil (MP Biomedicals, USA) according to the protocols provided by manufacturer’s instructions. A 142 

nested PCR approach was used to amplify the anammox 16S rRNA genes. In the first round of this 143 

PCR, the primer set Pla46f-630r was used to amplify the Planctomycetales 16S rRNA genes 144 

(Juretschko et al. 1998; Schmid et al. 2005). In the next round, anammox 16S rRNA genes were 145 

amplified using Amx368f-Amx820r as the primer set (Schmid et al. 2000; Schmid et al. 2003) and 146 

amplicons of Planctomycetales 16S rRNA genes as templates. The PCR reactions and thermal cycles 147 

were performed as previously described (Zhu et al. 2011). The amplified products were verified by 148 

electrophoresis in a 1.0% agarose gel, and then purified using a Universal DNA Purification Kit 149 

(Tiangen, Beijing China). The purified products were cloned into a pMD19-T vector (TaKaRa, Bio Inc., 150 

Shiga, Japan) according to the manufacturer’s instruction. At least 40 positive clones of each clone 151 

library were randomly selected for sequencing (MajorBio LTD., Shanghai, China). The quality of 152 

sequence was examined using the Chromas LITE (version 2.01, Technelysium Pty, QLD, Australia) 153 

program and the existence of chimeric sequence was further checked using QIIME (version 1.8) 154 

(Caporaso et al. 2010). After that, the sequences were aligned with the MEGA (version 6.0) (Tamura et 155 

al. 2013) software and manually checked and trimmed. 156 

 157 

2.5 Quantitative PCR (qPCR) assay 158 

The abundance of hzsB gene was determined in triplicate using a Light Cycler 480 with the primer 159 

set HSBeta396F-HSBeta742R (Wang et al. 2012). The 20 μL qPCR reaction contained 10 μL 160 

2×TransStart
®
 Top Green qPCR SuperMix (AQ131, Transgen biotech, Beijing, China), 0.25 μM each 161 

primer, 0.8 μL bovine serum albumin (BSA, 20 mg mL
-1

) and 2 μL of 5-fold diluted DNA as a template. 162 

The standard curve was obtained using 10-fold serial dilutions of plasmid DNA with target-gene of 163 

hzsB. Three non-template controls were carried out for each quantitative assay. The PCR was 164 

performed in triplicate with the following thermal profile: 95
o
C 3 min, followed by 40 cycles of 95

o
C 165 

for 15 s and 62
o
C for 34 s. Melting curves showed only one peak at 86

o
C. Only the reactions with 166 

efficiencies between 90% and 110% (Malte et al. 2015), and standard curves with correlation 167 

coefficient above 0.99 were employed in this study. 168 

 169 

2.6 Phylogenetic analysis 170 

The sequences from each clone library were identified by blasting in NCBI GenBank database. 171 



Operational taxonomic units (OTUs) were defined using 97% similarity in the nucleotide sequences by 172 

Mothur (version 1.34.0) (Schloss et al. 2009). The related reference sequences and our representative 173 

sequences were aligned, and the neighbor-joining phylogenetic tree was constructed by MEGA 174 

(version 6.0). A bootstrap analysis based on 1,000 replicates was applied to assess the cluster stabilities. 175 

The diversity, community composition of anammox, and redundancy analysis (RDA) were performed 176 

using R (version 2.14.0) software (https://www.r-project.org/). The plots in this study were created 177 

using Origin program (version 9.0).  178 

 179 

2.7 Statistical analysis 180 

  Pearson correlation analyses were used to test the correlations among the anammox bacterial activity, 181 

abundance and different environmental factors, using the SPSS 20.0 (SPSS, Chicago, Illinois, USA).  182 

 183 

2.8 Nucleotide sequence accession numbers 184 

The sequences obtained in this study are available in GenBank under accession numbers 185 

KU987935 - KU990864. 186 

 187 

3 Results  188 

3.1 Physicochemical properties of estuarine sediments 189 

The locations and physicochemical properties of the sampling sites can be found in Table S1. The 190 

physicochemical properties exhibited great heterogeneity among samples from northern and southern 191 

China. The pH ranged from 8.57±0.59 in LN-LH in the north to 6.49±0.03 in GD-LJ in the south. The 192 

TC varied from 0.53±0.33 to 1.84±0.87 g kg
-1

 dw, while TN ranged from 0.03±0.01 to 0.17±0.08 g kg
-1

 193 

dw, resulting in the C/N ratio ranging from 7.34±1.7 to 26.84±3.63. Concentration of NH
4

+

-N ranged 194 

between 0.18±0.1 mg kg
-1

 dw (ZJ-QTJ) and 12.54±9.59 mg kg
-1

 dw (TJ-YDXH). NOx
-
-N 195 

concentration varied from 0.03±0.01 mg kg
-1

 dw (ZJ-JJ) to 5.40±4.72 mg kg
-1

 dw (LN-LH), while not 196 

detected in ZJ-QTJ, GX-NLJ, GX-QJ and GX-FCJ.  197 

 198 

3.2 Anammox rates and contributions to N2 production 199 



No significant accumulation of 
15

N2-labeled gas (
29

N2 and/or 
30

N2) was detected in any of the sample 200 

slurries amended with only 
15

NH4
+
 (Fig. S1A, Supplemental material), indicating that all residual 201 

14
NOx

- 
had been consumed during pre-incubation. When both 

15
NH4

+
 and 

14
NO3

-
 were added, only 

29
N2 202 

accumulated in each soil (Fig. S1B, Supplemental material), indicating that anammox must have been 203 

occurring. When amended with 
14

NH4
+
 and 

15
NO3

-
, significant production of both 

29
N2 and 

30
N2 were 204 

detected, as a result of both anammox and denitrification (Fig. S1C, Supplemental material). Anammox 205 

rates ranged from 0.29±0.15 to 13.68±3.98 nmol N g
-1 

dw h
-1

, with the lowest and highest rate detected 206 

in QTJ in ZheJiang province and ZJ in GuangDong province, respectively (Table 1). Denitrification 207 

rates varied substantially from 0.31±0.06 to 56.63±17.29 nmol N g
-1 

dw h
-1

. The contribution to N2 208 

production was calculated based on these rates, with anammox contributing between 2.39 % (GX-FCJ) 209 

and 82.61% (ZJ-OJ) of total N2 production (Table 1), with the remaining production attributed to 210 

denitrification.  211 

 212 

3.3 Abundance and composition of anammox bacteria 213 

The presence of anammox bacteria was confirmed by qPCR in all samples from 18 estuaries (Fig.1). 214 

The abundance of hzsB genes in the sediments was from 1.8×10
5
 ± 3.4×10

4 
copies g

-1
 dw to 3.6×10

8 
± 215 

7.5×10
7 
copies g

-1
 dw. The ratio of hzsB gene copies to total bacterial 16S rRNA gene copies ranged 216 

from 0.005% (ZJ-YJ) to 3.72% (GD-ZJ).  217 

A total of 2,930 sequences were retrieved from the 18 estuarine sediment samples and clustered 218 

into 223 operational taxonomic units (OTUs). The phylogenetic analysis of the 16S rRNA gene 219 

showed that 80.17% of sequences were affiliated with the following known anammox bacterial genera: 220 

Candidatus Brocadia, Candidatus Scalindua, Candidatus Kuenenia, Candidatus Jettenia, and an 221 

additional 19.83% belonged to the unclassified Planctomycetes phylum (4 Clusters, I-IV) (Fig. S2). 222 

The most abundant genus was Candidatus Scalindua, followed by Candidatus Brocadia, Candidatus 223 

Kuenenia and Candidatus Jettenia (Fig. S2). The distribution of each cluster in 18 estuarine sediments 224 

was visualized in Fig. 2. Among them, Candidatus Scalindua was found to be prevalent in all sites 225 

and occupied up to 43.07% of the relative abundance (1262 sequences). Candidatus Brocadia was 226 

detected in most of the sites with the exception of GX-FCJ, FJ-HTX, ZJ-OJ, ZJ-JJ and LN-LH, and 227 

accounted for 19.32% (566 sequences). Candidatus Kuenenia was found to be present in all sediments 228 

except LN-LH, accounting for 16.18% (474 sequences). Sequences belonging to the Candidatus 229 



Jettenia genus contributed 1.6% (47/2930) overall, but up to 20% of the likely anammox bacteria in 230 

TJ-YDXH were assigned to Candidatus Jettenia. The remaining sequences (577 sequences) were 231 

affiliated to unknown Clusters and up to 60% of these unclassified taxa were found in TJ-YDXH. The 232 

ratio of Candidatus Scalindua to total anammox bacteria decreased from north to south China based 233 

on the latitude, with the exception of GX-FCJ and TJ-YDXH (Fig. 2, Fig. 3). In contrast, the 234 

abundance of Candidatus Brocadia and Candidatus Kuenenia exhibited a general pattern which 235 

increased from north to south (Fig. 2, Fig.3). Additionally, the ratio of the genus of Candidatus 236 

Scalindua to total anammox bacteria was found to be positively correlated with the latitude, whereas 237 

the proportions of genera of Candidatus Brocadia and Candidatus Kuenenia were both negatively 238 

correlated with the increasing latitude (Fig. 3). 239 

 240 

3.4 Influence of environmental factors on anammox rate, abundance, and diversity 241 

Pearson correlation analysis was used to illustrate the effects of the environmental factors on the 242 

anammox rate and abundance (Fig. 4). Results showed that anammox rates were positively correlated 243 

with TC (P<0.01), Temperature (P<0.01), NO3
-
 concentration (P<0.05), hzsB abundance (P<0.05), 244 

hzsB/16S rRNA (P<0.05), and salinity (P<0.05), whereas negatively correlated with DO (P<0.01). The 245 

hzsB abundance was positively correlated with salinity (P<0.01), NO3
-
 concentration (P<0.05), and 246 

negatively with NH4
+
 concentration (P<0.01). As revealed by RDA analysis, NH4

+
 concentration, pH, 247 

latitude, and temperature were found to be the main factors affecting the anammox bacterial diversity 248 

(Fig. 5). 249 

 250 

4 Discussion 251 

In the present study, the occurrence of anammox in coastal estuarine sediments in China was 252 

corroborated by using both molecular and isotope-tracing experiments. Four known genera of 253 

anammox bacteria (Candidatus Scalindua, Candidatus Brocadia, Candidatus Kuenenia, and 254 

Candidatus Jettenia) were identified, illustrating a relatively diverse set of anammox bacteria in the 255 

selected estuarine sediments. Similarly, diverse anammox bacteria have been observed in other 256 

estuarine and coastal wetlands (Dale et al. 2009; Hong et al. 2014; Lisa et al. 2014). This indicates that 257 

the fresh-seawater interface may provide diverse habitats and eco-niches for a higher diversity of 258 

anammox bacteria. In contrast, anammox community diversity in oceans (Schmid et al. 2007), rivers 259 

app:ds:ascribed
app:ds:to


(Zhang et al. 2007; Hu et al. 2012), and lakes (Hamersley et al. 2009) was low, limited primarily to 260 

Scalindua or Brocadia. Specifically, Candidatus Scalindua species were reported to be dominant in 261 

marine ( Schmid et al. 2007; Dale et al. 2009; Cao et al. 2011) and fresh water ecosystems (Schubert et 262 

al. 2006). Furthermore, the microbial diversity of anammox bacteria exhibited a latitudinal gradient 263 

along the coastal wetlands of China, which was consistent with previous results (Hou et al. 2015). This 264 

implies that temperature is a key environmental factor shaping the distribution and diversity of 265 

anammox bacteria in the coastal estuaries of China, and was further supported with the RDA analysis 266 

(Fig. 5). Therefore, the distribution pattern based on latitude underlines the significance of temperature 267 

in regulating the biogeographical distribution of anammox bacterial community structure and diversity 268 

over a large spatial scale.  269 

Our results exhibited a clear group specific biogeographical distribution (Fig. 5, Fig. S1). 270 

Candidatus Scalinduas was detected at all sites and had the highest relative abundance (up to 43%) 271 

among all anammox genera. Candidatus Scalinduas has been found in both marine (Schmid et al. 2007) 272 

and fresh water ecosystems (Schubert et al. 2006) and this flexibility could be the reason for its high 273 

abundance in most of our estuarine sites. Candidatus Brocadia accounted for 19.32% of the total 274 

anammox bacteria across all sites. It was reported that Brocadia possess a diverse metabolism (Gori et 275 

al. 2011). This may explain its ubiquitous distribution, where high organic loading is imported from 276 

river water. Interestingly, four novel clusters were also detected in our samples, suggesting that 277 

unknown anammox bacteria are yet to be discovered and investigated. 278 

A wide range of hzsB copy numbers from anammox bacteria was detected (ranging from 1.80×10
5
 279 

± 3.4×10
4 
copies g

-1
 dw to 3.6×10

8 
± 7.5×10

7 
copies g

-1
 dw), indicating that the overall abundance of 280 

anammox bacteria was highly variable in sediments at a continental scale. To our knowledge, the 281 

highest anammox abundance (2×10
9 
copies per gram dry weight) recorded in natural environments was 282 

detected in riparian sediments of the Pearl River Estuary in winter (Wang et al. 2012). The hzsB 283 

abundance in our study, measured in the summer, was comparable to the Pearl River Estuary in 284 

summer (1.3 ×10
6
-1.2 ×10

7 
copies g

-1
 dw) (Wang et al. 2012), China coastal wetlands (1.17×10

7 285 

-4.25×10
7
 copies g

-1
 dw) (Hou et al. 2015) and interface sediments (8×10

6
-2×10

7
 copies g

-1
 dw) (Zhu et 286 

al. 2013). Additionally, the abundance of the hzsB gene was significantly related to salinity, and it was 287 

positively but not significantly correlated with temperature (Fig. 4). One should expect copy numbers 288 

of anammox functional genes will be a significant factor in controlling anammox activity; however, 289 



here the anammox activity was not positively correlated with the hzsB gene copy number. This was 290 

probably due to quantification based on DNA rather than RNA. Similar results by Etchebehere et al. 291 

(2005) and Metz et al. (2003) demonstrated that no correlation was observed between copy numbers of 292 

functional gene and relative functions. Additionally, the abundances of anammox-related genera were 293 

significantly correlated with the latitude (Fig. 5), indicating that temperature was likely a key 294 

environmental factor shaping the biogeographical distribution and diversity of the anammox bacterial 295 

community.  296 

Our results suggest a ubiquitous distribution of anammox bacteria in estuarine sediments along 297 

4,000 kilometers of coast in China. On average, it was estimated that the anammox process contributed 298 

15.94 % to the total N loss from the coastal wetland sediments of China. This approximate value was 299 

comparable to that reported in rivers (Zhao et al. 2013), lakes (Schubert et al. 2006; Wenk et al. 2014), 300 

paddy soils (Zhu et al. 2011; Yang et al. 2015) and other estuaries (Risgaard-Petersen et al. 2004; 301 

Rysgaard et al. 2004; Engström et al. 2005), but lower than that generally detected in marine 302 

ecosystems (Tamdrup and Dalsgaard 2002; De Brabandere et al. 2014). Based on our results, N loss 303 

attributed to anammox was estimated to reach an average value of 9.70× 10
5
 t N per year on the basis 304 

of sediment weight, study area, and anammox average rate obtained from slurry incubations. This 305 

removal suggests approximately 40.4% of the total average terrigenous inorganic nitrogen (2.4×10
6
 t N 306 

per year) transported into the coastal wetlands of China. However, our results from the slurry 307 

incubations in lab might overestimate the in situ anammox activity for three reasons. First, the 308 

anammox activity might be enhanced since excess substrates were amended. Second, labile organic 309 

carbon could be depleted after the prolonged pre-incubation, leading to favorable conditions for 310 

anammox rather than denitrification. Finally, co-denitrification may be an additional pathway for N2 311 

production in sediments. Co-denitrification can generate 
29

N2 by reducing 
45

N2O, which is produced by 312 

using 
14

NH4
+ 

and 
15

NO3
-
/
15

NO2
-
 in 

15
N isotope pairing experiments (Long et al. 2013). Nevertheless, the 313 

ubiquitous detection of anammox bacteria indicated that anammox must play an important role in N2 314 

production. Therefore, our current study on the roles of anammox bacteria on N cycling at a continental 315 

scale is an important step for the estimation N loss in the vast coastal estuaries which span over 4,000 316 

kilometers of coastline and cover a range of climatic and geological zones. Furthermore, this study also 317 

emphasizes the importance of protecting coastal estuaries due to their non-negligible removal capacity 318 

of terrigenous inorganic nitrogen via both denitrification and anammox. 319 



 320 

5 Conclusions 321 

In conclusion, our results suggested that anammox bacteria are ubiquitous in estuarine sediments 322 

across coastal China. The anammox community was dominated by the genera of Candidatus Scalindua, 323 

Candidatus Kuenenia and Candidatus Brocadia and showed a clear biogeographic variation pattern 324 

from north to south. The anammox activity contributed 2.39-82.61% of total N2 production, suggesting 325 

the important role of anammox in controlling N cycling across ecosystems.  326 
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Figure legends 488 

 489 

Fig. 1 Abundance of anammox bacteria in the 18 estuarine sediments in China. The base map used is 490 

from the National Fundamental Geographic Information System of China. The columns in the box 491 

chart represent the log number of hzsB gene copy (copies g
-1

 dry soil). For all boxplots, black center 492 

lines represent the median and box edges are the first and third quartiles.  493 

Fig. 2 The relative abundance of each cluster in the Planctomycetes phylum in the 18 estuarine 494 

sediment samples. The colors indicate different taxa. Horizontal axis is the relative abundance and the 495 

vertical axis is the sampled estuaries. 496 

Fig. 3 The locations of the 18 sampling sites (a) and the correlation analysis between relative 497 

abundance of the predominant genera (b) Candidatus Scalindua, (c) Candidatus Brocadia, (d) 498 

Candidatus Kuenenia to the Planctomycetes phylum and the latitude of sampling sites  499 

Fig. 4 Pearson correlation analyses of anammox rate, hzsB gene abundance, hzsB/16S rRNA and the 500 

soil properties (including TN, TC, C/N, pH, NH4
+
, NO3

-
, temperature, dissolved oxygen and salinity) in 501 

the collected paddy soils. Red and blue denote positive, and negative correlation, respectively. 
*
denotes 502 

a P value of <0.05 and 
**

denotes a P value of <0.01. Tem=temperature; DO= dissolved oxygen; 503 

sal=salinity; TN=total nitrogen; TC=total carbon. 504 

Fig. 5 Redundancy analysis (RDA) to measure the relationship between the anammox community 505 

composition, physicochemical properties, and relative abundance of Candidatus Scalindua, Candidatus 506 

Brocadia, Candidatus Kuenenia and Candidatus Jettenia. Only those factors that significantly describe 507 

variance in the composition of the anammox bacterial community determined by variation inflation 508 

factors (VIFs) calculated during RDA are shown here. 509 
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Table 1 Rates of anammox and denitrification measured by 
15

N tracing technique and the relative 575 

contribution to total dinitrogen production 576 

Sites 

Anammox rate Denitrification rate Anammox contribution 

(%) （nmol N g
-1

 dw h
-1） （nmol N g

-1
 dw h

-1） 

LN-LH 1.72±0.97 3.25±0.46 34.61 

LN-BLH 1.35±0.32 17.98±1.56 6.98 

HB-LH 0.57±0.03 15.63±9.58 3.52 

TJ-YDXH 1.32±0.23 25.61±3.40 4.90 

ZJ-QTJ 0.29±0.15 0.31±0.06 48.33 

ZJ-YJ 1.55±0.31 30.00±1.97 4.91 

ZJ-JJ 1.10±0.51 15.31±1.88 6.70 

ZJ-OJ 2.09±0.48 0.44±0.02 82.61 

FJ-HTX 4.18±1.86 22.85±3.04 15.46 

FJ-MJ 2.51±0.46 36.11±9.53 6.50 

FJ-JJ 0.97±0.97 26.95±2.11 3.47 

FJ-JLJ 3.24±0.45 56.63±17.29 5.41 

GD-HJ 1.09±0.46 33.81±4.01 3.12 

GD-LJ 1.11±0.70 21.52±2.70 4.90 

GD-ZJ 13.68±3.98 50.9±2.46 21.18 

GX-NLJ 1.66±0.43 4.76±1.02 25.86 

GX-QJ 2.83±0.43 43.3±8.59 6.13 

GX-FCJ 1.15±0.12 47.01±4.93 2.39 
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