12,855 research outputs found
A Three-Pole Substrate Integrated Waveguide Bandpass Filter Using New Coupling Scheme
A novel three-pole substrate integrated waveguide (SIW) bandpass filter (BPF) using new coupling scheme is proposed in this paper. Two high order degenerate modes (TE102 and TE201) of a square SIW cavity and a dominant mode (TE101) of a rectangular SIW cavity are coupled to form a three-pole SIW BPF. The coupling scheme of the structure is given and analyzed. Due to the coupling between two cavities, as well as the coupling between source and load, three transmission zeros are created in the stopband of the filter. The proposed three-pole SIW BPF is designed and fabricated. Good agreement between simulated and measured results verifies the validity of the design methodology well
Wilson ratio of Fermi gases in one dimension
We calculate the Wilson ratio of the one-dimensional Fermi gas with spin
imbalance. The Wilson ratio of attractively interacting fermions is solely
determined by the density stiffness and sound velocity of pairs and of excess
fermions for the two-component Tomonaga-Luttinger liquid (TLL) phase. The ratio
exhibits anomalous enhancement at the two critical points due to the sudden
change in the density of states. Despite a breakdown of the quasiparticle
description in one dimension, two important features of the Fermi liquid are
retained, namely the specific heat is linearly proportional to temperature
whereas the susceptibility is independent of temperature. In contrast to the
phenomenological TLL parameter, the Wilson ratio provides a powerful parameter
for testing universal quantum liquids of interacting fermions in one, two and
three dimensions.Comment: 5+2 pages, 4+1 figures, Eq. (4) is proved, figures were refine
Universal local pair correlations of Lieb-Liniger bosons at quantum criticality
The one-dimensional Lieb-Liniger Bose gas is a prototypical many-body system
featuring universal Tomonaga-Luttinger liquid (TLL) physics and free fermion
quantum criticality. We analytically calculate finite temperature local pair
correlations for the strong coupling Bose gas at quantum criticality using the
polylog function in the framework of the Yang-Yang thermodynamic equations. We
show that the local pair correlation has the universal value in the quantum critical regime, the TLL phase and the
quasi-classical region, where is the pressure per unit length rescaled by
the interaction energy with interaction
strength and linear density . This suggests the possibility to test
finite temperature local pair correlations for the TLL in the relativistic
dispersion regime and to probe quantum criticality with the local correlations
beyond the TLL phase. Furthermore, thermodynamic properties at high
temperatures are obtained by both high temperature and virial expansion of the
Yang-Yang thermodynamic equation.Comment: 8 pages, 6 figures, additional text and reference
Bileptons from Muon Collider Backward Scattering
There are serious discussions for building a muon collider with
collisions at c.o.m. energies up to 4 TeV. We point out that
the bileptonic gauge bosons predicted in some extensions of the Standard Model
would be readily discernable from the backward scattering cross-section, for
bilepton masses up to a substantial fraction of the c.o.m. energy.Comment: 10 pages Revtex. 4 figures include
Phased Array Systems in Silicon
Phased array systems, a special case of MIMO systems, take advantage of spatial directivity and array gain to increase spectral efficiency. Implementing a phased array system at high frequency in a commercial silicon process technology presents several challenges. This article focuses on the architectural and circuit-level trade-offs involved in the design of the first silicon-based fully integrated phased array system operating at 24 GHz. The details of some of the important circuit building blocks are also discussed. The measured results demonstrate the feasibility of using integrated phased arrays for wireless communication and vehicular radar applications at 24 GHz
Magnetic Phase Transitions in One-dimensional Strongly Attractive Three-Component Ultracold Fermions
We investigate the nature of trions, pairing and quantum phase transitions in
one-dimensional strongly attractive three-component ultracold fermions in
external fields. Exact results for the groundstate energy, critical fields,
magnetization and phase diagrams are obtained analytically from the Bethe
ansatz solutions. Driven by Zeeman splitting, the system shows exotic phases of
trions, bound pairs, a normal Fermi liquid and four mixtures of these states.
Particularly, a smooth phase transition from a trionic phase into a pairing
phase occurs as the highest hyperfine level separates from the two lower energy
levels. In contrast, there is a smooth phase transition from the trionic phase
into a normal Fermi liquid as the lowest level separates from the two higher
levels.Comment: 4 pages, 3 figures, minor revisions to text, replacement figure, refs
added and update
Optimization of mycelium biomass and exopolysaccharides production by Hirsutella sp. in submerged fermentation and evaluation of exopolysaccharides antibacterial activity
Hirsutella is a hyphomycete that has been used as biopesticide. Many compounds with antimycobacterial activity have been reported. However, there were fewer reports about fermentation condition for the Hirsutella and activity of its exopolysaccharides. In the present investigation, thefermentation condition and medium for mycelia growth and exopolysaccharides production were optimized and the antibacterial activity of exopolysaccharides (EPS) from Hirsutella sp. was studied. The optimized conditions and medium were as follows: initial pH 5.5, potato extract 20% (w/v), sucrose 2.5%, peptone 0.5%, K2HPO4 0.2%, MgSO4 0.05% and fermentation for 4 days. The highest production of EPS and mycelium biomass yield reached 2.17 and 10.06 g/l, respectively. The content of sugar and protein of EPS were 92.7 and 5.2%, respectively. The monosaccharide component of EPS was mannose, galactose and glucose with a molar ratio of 4.0:8.2:1.0. Its molecular weight was 23 kDa. Theantibacterial effect of EPS was observed that they were most effective against gram-positive bacterium, especially Bacillus subtilis and Micrococcus tetragenus. The MIC of exopolysaccharides to B. subtilisand M. tetragenus was 1 and 2.5 mg/ml, respectively. These results are helpful to expand the application of Hirsutella sp. as a biological pesticide
KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation.
KDM2B (also known as FBXL10) controls stem cell self-renewal, somatic cell reprogramming and senescence, and tumorigenesis. KDM2B contains multiple functional domains, including a JmjC domain that catalyzes H3K36 demethylation and a CxxC zinc-finger that recognizes CpG islands and recruits the polycomb repressive complex 1. Here, we report that KDM2B, via its F-box domain, functions as a subunit of the CUL1-RING ubiquitin ligase (CRL1/SCF(KDM2B)) complex. KDM2B targets c-Fos for polyubiquitylation and regulates c-Fos protein levels. Unlike the phosphorylation of other SCF (SKP1-CUL1-F-box)/CRL1 substrates that promotes substrates binding to F-box, epidermal growth factor (EGF)-induced c-Fos S374 phosphorylation dissociates c-Fos from KDM2B and stabilizes c-Fos protein. Non-phosphorylatable and phosphomimetic mutations at S374 result in c-Fos protein which cannot be induced by EGF or accumulates constitutively and lead to decreased or increased cell proliferation, respectively. Multiple tumor-derived KDM2B mutations impaired the function of KDM2B to target c-Fos degradation and to suppress cell proliferation. These results reveal a novel function of KDM2B in the negative regulation of cell proliferation by assembling an E3 ligase to targeting c-Fos protein degradation that is antagonized by mitogenic stimulations
Specific heat and thermal conductivity of ferromagnetic magnons in Yttrium Iron Garnet
The specific heat and thermal conductivity of the insulating ferrimagnet
YFeO (Yttrium Iron Garnet, YIG) single crystal were measured
down to 50 mK. The ferromagnetic magnon specific heat shows a
characteristic dependence down to 0.77 K. Below 0.77 K, a downward
deviation is observed, which is attributed to the magnetic dipole-dipole
interaction with typical magnitude of 10 eV. The ferromagnetic magnon
thermal conductivity does not show the characteristic
dependence below 0.8 K. To fit the data, both magnetic defect
scattering effect and dipole-dipole interaction are taken into account. These
results complete our understanding of the thermodynamic and thermal transport
properties of the low-lying ferromagnetic magnons.Comment: 5 pages, 5 figure
- …