16,220 research outputs found

    Exactly solvable models and ultracold Fermi gases

    Full text link
    Exactly solvable models of ultracold Fermi gases are reviewed via their thermodynamic Bethe Ansatz solution. Analytical and numerical results are obtained for the thermodynamics and ground state properties of two- and three-component one-dimensional attractive fermions with population imbalance. New results for the universal finite temperature corrections are given for the two-component model. For the three-component model, numerical solution of the dressed energy equations confirm that the analytical expressions for the critical fields and the resulting phase diagrams at zero temperature are highly accurate in the strong coupling regime. The results provide a precise description of the quantum phases and universal thermodynamics which are applicable to experiments with cold fermionic atoms confined to one-dimensional tubes.Comment: based on an invited talk at Statphys24, Cairns (Australia) 2010. 16 pages, 6 figure

    Universal Tomonaga-Luttinger liquid phases in one-dimensional strongly attractive SU(N) fermionic cold atoms

    Full text link
    A simple set of algebraic equations is derived for the exact low-temperature thermodynamics of one-dimensional multi-component strongly attractive fermionic atoms with enlarged SU(N) spin symmetry and Zeeman splitting. Universal multi-component Tomonaga-Luttinger liquid (TLL) phases are thus determined. For linear Zeeman splitting, the physics of the gapless phase at low temperatures belongs to the universality class of a two-component asymmetric TLL corresponding to spin-neutral N-atom composites and spin-(N-1)/2 single atoms. The equation of states is also obtained to open up the study of multi-component TLL phases in 1D systems of N-component Fermi gases with population imbalance.Comment: 12 pages, 3 figure

    Universality class of quantum criticality for strongly repulsive spin-1 bosons with antiferromagnetic spin-exchange interaction

    Get PDF
    Using the thermodynamic Bethe ansatz equations we study the quantum phase diagram, thermodynamics and criticality of one-dimensional spin-1 bosons with strongly repulsive density-density and antiferromagnetic spin-exchange interactions. We analytically derive a high precision equation of state from which the Tomonaga-Luttinger liquid physics and quantum critical behavior of the system are computed. We obtain explicit forms for the scaling functions near the critical points yielding the dynamical exponent z=2z=2 and correlation length exponent ν=1/2\nu=1/2 for the quantum phase transitions driven by either the chemical potential or the magnetic field. Consequently, we further demonstrate that quantum criticality of the system can be mapped out from the finite temperature density and magnetization profiles of the 1D trapped gas. Our results provide the physical origin of quantum criticality in a 1D many-body system beyond the Tomonaga-Luttinger liquid description.Comment: 12 pages, 11 figure

    Specific heat and thermal conductivity of ferromagnetic magnons in Yttrium Iron Garnet

    Full text link
    The specific heat and thermal conductivity of the insulating ferrimagnet Y3_3Fe5_5O12_{12} (Yttrium Iron Garnet, YIG) single crystal were measured down to 50 mK. The ferromagnetic magnon specific heat CCm_m shows a characteristic T1.5T^{1.5} dependence down to 0.77 K. Below 0.77 K, a downward deviation is observed, which is attributed to the magnetic dipole-dipole interaction with typical magnitude of 104^{-4} eV. The ferromagnetic magnon thermal conductivity κm\kappa_m does not show the characteristic T2T^2 dependence below 0.8 K. To fit the κm\kappa_m data, both magnetic defect scattering effect and dipole-dipole interaction are taken into account. These results complete our understanding of the thermodynamic and thermal transport properties of the low-lying ferromagnetic magnons.Comment: 5 pages, 5 figure

    Universal local pair correlations of Lieb-Liniger bosons at quantum criticality

    Full text link
    The one-dimensional Lieb-Liniger Bose gas is a prototypical many-body system featuring universal Tomonaga-Luttinger liquid (TLL) physics and free fermion quantum criticality. We analytically calculate finite temperature local pair correlations for the strong coupling Bose gas at quantum criticality using the polylog function in the framework of the Yang-Yang thermodynamic equations. We show that the local pair correlation has the universal value g(2)(0)2p/(nε)g^{(2)}(0)\approx 2 p/(n\varepsilon) in the quantum critical regime, the TLL phase and the quasi-classical region, where pp is the pressure per unit length rescaled by the interaction energy ε=22mc2\varepsilon=\frac{\hbar^2}{2m} c^2 with interaction strength cc and linear density nn. This suggests the possibility to test finite temperature local pair correlations for the TLL in the relativistic dispersion regime and to probe quantum criticality with the local correlations beyond the TLL phase. Furthermore, thermodynamic properties at high temperatures are obtained by both high temperature and virial expansion of the Yang-Yang thermodynamic equation.Comment: 8 pages, 6 figures, additional text and reference

    The Heine-Stieltjes correspondence and the polynomial approach to the standard pairing problem

    Get PDF
    A new approach for solving the Bethe ansatz (Gaudin-Richardson) equations of the standard pairing problem is established based on the Heine-Stieltjes correspondence. For kk pairs of valence nucleons on nn different single-particle levels, it is found that solutions of the Bethe ansatz equations can be obtained from one (k+1)x(k+1) and one (n-1)x(k+1) matrices, which are associated with the extended Heine-Stieltjes and Van Vleck polynomials, respectively. Since the coefficients in these polynomials are free from divergence with variations in contrast to the original Bethe ansatz equations, the approach thus provides with a new efficient and systematic way to solve the problem, which, by extension, can also be used to solve a large class of Gaudin-type quantum many-body problems and to establish a new efficient angular momentum projection method for multi-particle systems.Comment: ReVTeX, 4 pages, no figur

    Evidence for the super Tonks-Girardeau gas

    Full text link
    We provide evidence in support of a recent proposal by Astrakharchik at al. for the existence of a super Tonks-Girardeau gas-like state in the attractive interaction regime of quasi-one-dimensional Bose gases. We show that the super Tonks-Giradeau gas-like state corresponds to a highly-excited Bethe state in the integrable interacting Bose gas for which the bosons acquire hard-core behaviour. The gas-like state properties vary smoothly throughout a wide range from strong repulsion to strong attraction. There is an additional stable gas-like phase in this regime in which the bosons form two-body bound states behaving like hard-core bosons.Comment: 10 pages, 1 figure, 2 tables, additional text on the stability of the super T-G gas-like stat

    Quantum Criticality of 1D Attractive Fermi Gas

    Full text link
    We obtain an analytical equation of state for one-dimensional strongly attractive Fermi gas for all parameter regime in current experiments. From the equation of state we derive universal scaling functions that control whole thermodynamical properties in quantum critical regimes and illustrate physical origin of quantum criticality. It turns out that the critical properties of the system are described by these of free fermions and those of mixtures of fermions with mass mm and 2m2m. We also show how these critical properties of bulk systems can be revealed from the density profile of trapped Fermi gas at finite temperatures and can be used to determine the T=0 phase boundaries without any arbitrariness.Comment: extended version, 9 pages, 7 eps figures, corrections of few typo

    Uniqueness and examples of compact toric Sasaki-Einstein metrics

    Full text link
    In [11] it was proved that, given a compact toric Sasaki manifold of positive basic first Chern class and trivial first Chern class of the contact bundle, one can find a deformed Sasaki structure on which a Sasaki-Einstein metric exists. In the present paper we first prove the uniqueness of such Einstein metrics on compact toric Sasaki manifolds modulo the action of the identity component of the automorphism group for the transverse holomorphic structure, and secondly remark that the result of [11] implies the existence of compatible Einstein metrics on all compact Sasaki manifolds obtained from the toric diagrams with any height, or equivalently on all compact toric Sasaki manifolds whose cones have flat canonical bundle. We further show that there exists an infinite family of inequivalent toric Sasaki-Einstein metrics on S5k(S2×S3)S^5 \sharp k(S^2 \times S^3) for each positive integer kk.Comment: Statements of the results are modifie
    corecore