In [11] it was proved that, given a compact toric Sasaki manifold of positive
basic first Chern class and trivial first Chern class of the contact bundle,
one can find a deformed Sasaki structure on which a Sasaki-Einstein metric
exists. In the present paper we first prove the uniqueness of such Einstein
metrics on compact toric Sasaki manifolds modulo the action of the identity
component of the automorphism group for the transverse holomorphic structure,
and secondly remark that the result of [11] implies the existence of compatible
Einstein metrics on all compact Sasaki manifolds obtained from the toric
diagrams with any height, or equivalently on all compact toric Sasaki manifolds
whose cones have flat canonical bundle. We further show that there exists an
infinite family of inequivalent toric Sasaki-Einstein metrics on S5♯k(S2×S3) for each positive integer k.Comment: Statements of the results are modifie