177 research outputs found

    Survey of hepatitis B knowledge and stigma among chronically infected patients and uninfected persons in Beijing, China

    Full text link
    Background & AimsHepatitis B virus (HBV) infection carries substantial stigma in China. We surveyed HBV knowledge and stigma among chronic hepatitis B (CHB) patients and persons without HBV infection in Beijing, China.MethodsFour hundred and thirty five CHB patients and 801 controls at Peking University People’s Hospital were surveyed.ResultsChronic hepatitis B patients were older (mean 46 vs. 39 years) and more often men (71 vs. 48%) than controls. Mean knowledge score was 11.9/15 for CHB and 9.3/15 for control patients (P < 0.001). Average stigma score was 22.1/39 for CHB and 19.2/30 for control patients. Controls expressed discomfort with close contact (45%) or sharing meals with CHB patients (39%) and believed CHB patients should not be allowed to work in restaurants (58%) or childcare (44%). Chronic hepatitis B patients felt that they were undesirable as spouses (33 vs. 17%) and brought trouble to their families (58 vs. 34%) more often than controls. Despite legal prohibitions, 40% of CHB patients were required to undergo pre‐employment HBV testing, and 29% of these individuals thought that they lost job opportunities because of their disease status. 16% of CHB patients regretted disclosing their HBV status and disclosure was inversely associated with stigma. Higher stigma was associated with older age, lower education and lower knowledge score among controls; and with lower education, younger age, having undergone pre‐employment HBV testing and regret disclosing their HBV status among CHB patients.ConclusionDespite high prevalence of CHB in China, our study shows knowledge is limited and there is significant societal and internalized stigma associated with HBV infection.See Editorial on Page 1582Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134440/1/liv13168_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134440/2/liv13168.pd

    Autophagy proteins control goblet cell function by potentiating reactive oxygen species production

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102240/1/embj2013233-reviewer_comments.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102240/2/embj2013233-sup-0001.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102240/3/embj2013233.pd

    The Principal Genetic Determinants for Nasopharyngeal Carcinoma in China Involve the HLA Class I Antigen Recognition Groove

    Get PDF
    Nasopharyngeal carcinoma (NPC) is an epithelial malignancy facilitated by Epstein-Barr Virus infection. Here we resolve the major genetic influences for NPC incidence using a genome-wide association study (GWAS), independent cohort replication, and high-resolution molecular HLA class I gene typing including 4,055 study participants from the Guangxi Zhuang Autonomous Region and Guangdong province of southern China. We detect and replicate strong association signals involving SNPs, HLA alleles, and amino acid (aa) variants across the major histocompatibility complex-HLA-A, HLA –B, and HLA -C class I genes (PHLA-A-aa-site-62 = 7.4×10−29; P HLA-B-aa-site-116 = 6.5×10−19; P HLA-C-aa-site-156 = 6.8×10−8 respectively). Over 250 NPC-HLA associated variants within HLA were analyzed in concert to resolve separate and largely independent HLA-A, -B, and -C gene influences. Multivariate logistical regression analysis collapsed significant associations in adjacent genes spanning 500 kb (OR2H1, GABBR1, HLA-F, and HCG9) as proxies for peptide binding motifs carried by HLA- A*11:01. A similar analysis resolved an independent association signal driven by HLA-B*13:01, B*38:02, and B*55:02 alleles together. NPC resistance alleles carrying the strongly associated amino acid variants implicate specific class I peptide recognition motifs in HLA-A and -B peptide binding groove as conferring strong genetic influence on the development of NPC in China

    Induction of autophagy is a key component of all-trans-retinoic acid-induced differentiation in leukemia cells and a potential target for pharmacological modulation

    Get PDF
    Acute myeloid leukemia (AML) is characterized by the accumulation of immature blood cell precursors in the bone marrow. Pharmacologically overcoming the differentiation block in this condition is an attractive therapeutic avenue, which has achieved success only in a subtype of AML, acute promyelocytic leukemia (APL). Attempts to emulate this success in other AML subtypes have thus far been unsuccessful. Autophagy is a conserved protein degradation pathway with important roles in mammalian cell differentiation, particularly within the hematopoietic system. In the study described here, we investigated the functional importance of autophagy in APL cell differentiation. We found that autophagy is increased during all-trans-retinoic acid (ATRA)-induced granulocytic differentiation of the APL cell line NB4 and that this is associated with increased expression of LC3II and GATE-16 proteins involved in autophagosome formation. Autophagy inhibition, using either drugs (chloroquine/3-methyladenine) or short-hairpin RNA targeting the essential autophagy gene ATG7, attenuates myeloid differentiation. Importantly, we found that enhancing autophagy promotes ATRA-induced granulocytic differentiation of an ATRA-resistant derivative of the non-APL AML HL60 cell line (HL60-Diff-R). These data support the development of strategies to stimulate autophagy as a novel approach to promote differentiation in AML

    X-Ray Fluorescence Microscopy Reveals Accumulation and Secretion of Discrete Intracellular Zinc Pools in the Lactating Mouse Mammary Gland

    Get PDF
    The mammary gland is responsible for the transfer of a tremendous amount of zinc ( approximately 1-3 mg zinc/day) from maternal circulation into milk during lactation to support the growth and development of the offspring. When this process is compromised, severe zinc deficiency compromises neuronal development and immune function and increases infant morbidity and/or mortality. It remains unclear as to how the lactating mammary gland dynamically integrates zinc import from maternal circulation with the enormous amount of zinc that is secreted into milk.Herein we utilized X-ray fluorescence microscopy (XFM) which allowed for the visualization and quantification of the process of zinc transfer through the mammary gland of the lactating mouse. Our data illustrate that a large amount of zinc first accumulates in the mammary gland during lactation. Interestingly, this zinc is not cytosolic, but accumulated in large, discrete sub-cellular compartments. These zinc pools were then redistributed to small intracellular vesicles destined for secretion in a prolactin-responsive manner. Confocal microscopy identified mitochondria and the Golgi apparatus as the sub-cellular compartments which accumulate zinc; however, zinc pools in the Golgi apparatus, but not mitochondria are redistributed to vesicles destined for secretion during lactation.Our data directly implicate the Golgi apparatus in providing a large, mobilizable zinc storage pool to assist in providing for the tremendous amount of zinc that is secreted into milk. Interestingly, our study also provides compelling evidence that mitochondrial zinc pools expand in the mammary gland during lactation which we speculate may play a role in regulating mammary gland function

    Chromosomal amplifications, 3q gain and deletions of 2q33-q37 are the frequent genetic changes in cervical carcinoma

    Get PDF
    BACKGROUND: Carcinoma of uterine cervix is the second most common cancers among women worldwide. Combined radiation and chemotherapy is the choice of treatment for advanced stages of the disease. The prognosis is poor, with a five-year survival rate ranging from about 20–65%, depending on stage of the disease. Therefore, genetic characterization is essential for understanding the biology and clinical heterogeneity in cervical cancer (CC). METHODS: We used a genome-wide screening method – comparative genomic hybridization (CGH) to identify DNA copy number changes in 77 patients with cervical cancer. We applied categorical and survival analyses to analyze whether chromosomal changes were related to clinico-pathologic characteristics and patients survival. RESULTS: The CGH analysis revealed a loss of 2q33-q37 (57.1%), gain of 3q (54.5%) and chromosomal amplifications (20.77%) as frequent genetic changes. A total of 15 amplified chromosomal sites were detected in 16 cases that include 1p31, 2q32, 7q22, 8q21.2-q24, 9p22, 10q21, 10q24, 11q13, 11q21, 12q15, 14q12, 17p11.2, 17q22, 18p11.2, and 19q13.1. Recurrent amplified sites were noted at 11q13, 11q21, and 19q13.1. The genomic alterations were further evaluated for prognostic significance in CC patients, and we did not find any correlation with a number of clinical or histological parameters. The tumors harboring HPV18 exhibited higher genomic instability compared to tumors with HPV 16. CONCLUSIONS: This study demonstrated that 2q33-q37 deletions, 3q gains and chromosomal amplifications as characteristic changes in invasive CC. These genetic alterations will aid in the identification of novel tumor suppressor gene(s) at 2q33-q37 and oncogenes at amplified chromosomal sites. Molecular characterization of these chromosomal changes utilizing the current genomic technologies will provide new insights into the biology and clinical behavior of CC

    Antimetastatic gene expression profiles mediated by retinoic acid receptor beta 2 in MDA-MB-435 breast cancer cells

    Get PDF
    BACKGROUND: The retinoic acid receptor beta 2 (RARβ2) gene modulates proliferation and survival of cultured human breast cancer cells. Previously we showed that ectopic expression of RARβ2 in a mouse xenograft model prevented metastasis, even in the absence of the ligand, all-trans retinoic acid. We investigated both cultured cells and xenograft tumors in order to delineate the gene expression profiles responsible for an antimetastatic phenotype. METHODS: RNA from MDA-MB-435 human breast cancer cells transduced with RARβ2 or empty retroviral vector (LXSN) was analyzed using Agilent Human 1A Oligo microarrays. The one hundred probes with the greatest differential intensity (p < 0.004, jointly) were determined by selecting the top median log ratios from eight-paired microarrays. Validation of differences in expression was done using Northern blot analysis and quantitative RT-PCR (qRT-PCR). We determined expression of selected genes in xenograft tumors. RESULTS: RARβ2 cells exhibit gene profiles with overrepresentation of genes from Xq28 (p = 2 × 10(-8)), a cytogenetic region that contains a large portion of the cancer/testis antigen gene family. Other functions or factors impacted by the presence of exogenous RARβ2 include mediators of the immune response and transcriptional regulatory mechanisms. Thirteen of fifteen (87%) of the genes evaluated in xenograft tumors were consistent with differences we found in the cell cultures (p = 0.007). CONCLUSION: Antimetastatic RARβ2 signalling, direct or indirect, results in an elevation of expression for genes such as tumor-cell antigens (CTAG1 and CTAG2), those involved in innate immune response (e.g., RIG-I/DDX58), and tumor suppressor functions (e.g., TYRP1). Genes whose expression is diminished by RARβ2 signalling include cell adhesion functions (e.g, CD164) nutritional or metabolic processes (e.g., FABP6), and the transcription factor, JUN

    Nodeomics: Pathogen Detection in Vertebrate Lymph Nodes Using Meta-Transcriptomics

    Get PDF
    The ongoing emergence of human infections originating from wildlife highlights the need for better knowledge of the microbial community in wildlife species where traditional diagnostic approaches are limited. Here we evaluate the microbial biota in healthy mule deer (Odocoileus hemionus) by analyses of lymph node meta-transcriptomes. cDNA libraries from five individuals and two pools of samples were prepared from retropharyngeal lymph node RNA enriched for polyadenylated RNA and sequenced using Roche-454 Life Sciences technology. Protein-coding and 16S ribosomal RNA (rRNA) sequences were taxonomically profiled using protein and rRNA specific databases. Representatives of all bacterial phyla were detected in the seven libraries based on protein-coding transcripts indicating that viable microbiota were present in lymph nodes. Residents of skin and rumen, and those ubiquitous in mule deer habitat dominated classifiable bacterial species. Based on detection of both rRNA and protein-coding transcripts, we identified two new proteobacterial species; a Helicobacter closely related to Helicobacter cetorum in the Helicobacter pylori/Helicobacter acinonychis complex and an Acinetobacter related to Acinetobacter schindleri. Among viruses, a novel gamma retrovirus and other members of the Poxviridae and Retroviridae were identified. We additionally evaluated bacterial diversity by amplicon sequencing the hypervariable V6 region of 16S rRNA and demonstrate that overall taxonomic diversity is higher with the meta-transcriptomic approach. These data provide the most complete picture to date of the microbial diversity within a wildlife host. Our research advances the use of meta-transcriptomics to study microbiota in wildlife tissues, which will facilitate detection of novel organisms with pathogenic potential to human and animals
    corecore