486 research outputs found

    Deep Learning in Predicting Real Estate Property Prices: A Comparative Study

    Get PDF
    The dominant methods for real estate property price prediction or valuation are multi-regression based. Regression-based methods are, however, imperfect because they suffer from issues such as multicollinearity and heteroscedasticity. Recent years have witnessed the use of machine learning methods but the results are mixed. This paper introduces the application of a new approach using deep learning models to real estate property price prediction. The paper uses a deep learning approach for modeling to improve the accuracy of real estate property price prediction with data representing sales transactions in a large metropolitan area. Three deep learning models, LSTM, GRU and Transformer, are created and compared with other machine learning and traditional models. The results obtained for the data set with all features clearly show that the RF and Transformer models outperformed the other models. LSTM and GRU models produced the worst results, suggesting that they are perhaps not suitable to predict the real estate price. Furthermore, the implementations of Transformer and RF on a data set with feature reduction produced even more accurate prediction results. In conclusion, our research shows that the performance of the Transformer model is close to the RF model. Both models produce significantly better prediction results than existing approaches in terms of accuracy

    Antibiotic Resistomes in Plant Microbiomes

    Get PDF
    Microorganisms associated with plants may alter the traits of the human microbiome important for human health, but this alteration has largely been overlooked. The plant microbiome is an interface between plants and the environment, and provides many ecosystem functions such as improving nutrient uptake and protecting against biotic and abiotic stress. The plant microbiome also represents a major pathway by which humans are exposed to microbes and genes consumed with food, such as pathogenic bacteria, antibiotic-resistant bacteria, and antibiotic-resistance genes. In this review we highlight the main findings on the composition and function of the plant microbiome, and underline the potential of plant microbiomes in the dissemination of antibiotic resistance via food consumption or direct contact

    Effects of Direct Renin Inhibition on Myocardial Fibrosis and Cardiac Fibroblast Function

    Get PDF
    Myocardial fibrosis, a major pathophysiologic substrate of heart failure with preserved ejection fraction (HFPEF), is modulated by multiple pathways including the renin-angiotensin system. Direct renin inhibition is a promising anti-fibrotic therapy since it attenuates the pro-fibrotic effects of renin in addition to that of other effectors of the renin-angiotensin cascade. Here we show that the oral renin inhibitor aliskiren has direct effects on collagen metabolism in cardiac fibroblasts and prevented myocardial collagen deposition in a non-hypertrophic mouse model of myocardial fibrosis. Adult mice were fed hyperhomocysteinemia-inducing diet to induce myocardial fibrosis and treated concomitantly with either vehicle or aliskiren for 12 weeks. Blood pressure and plasma angiotensin II levels were normal in control and hyperhomocysteinemic mice and reduced to levels lower than observed in the control group in the groups treated with aliskiren. Homocysteine-induced myocardial matrix gene expression and fibrosis were also prevented by aliskiren. In vitro studies using adult rat cardiac fibroblasts also showed that aliskiren attenuated the pro-fibrotic pattern of matrix gene and protein expression induced by D,L, homocysteine. Both in vivo and in vitro studies demonstrated that the Akt pathway was activated by homocysteine, and that treatment with aliskiren attenuated Akt activation. In conclusion, aliskiren as mono-therapy has potent and direct effects on myocardial matrix turnover and beneficial effects on diastolic function

    Endolymphatic sac tumor: case report and review of the literature

    Get PDF
    Endolymphatic sac tumor (ELST) is a rare neoplasm which can be encountered sporadically or in Von Hippel-Lindau (VHL) disease. Here we report a sporadic case of ELST in 31-year-old man. Neither the symptoms nor a family history of VHL disease were found in the patient. CT imaging demonstrated an expansile lytic lesion of the mastoid process of the left petrous bone. MR scanning revealed a 5.2 cm × 4.7 cm × 4.2 cm mass which showed hyperintensity on T1- and T2-weighted images. Histologic sections showed a papillary, cystic or glandular architecture. The papillary and glandular structures were lined by a single layer of flattened cuboidal-to-columnar cells. The stroma of the papillary fronds was richly vascularized and chronically inflamed. The tumor showed diffusely positive reactivity with cytokeratin (Pan), cytokeratin 19, cytokeratin 5/6, cytokeratin 7, EMA, vimentin, CD56, and NSE and also showed variable reactivity with glial fibrillary acidic protein (GFAP) and VEGF. The Ki-67 immunostain showed a proliferation index of < 1%. Because the mass was large, it was difficult to extirpate surgically. After surgery, the patient underwent gamma-knife radiosurgery for residual tumor. The findings indicate that ELST is a rare neoplasm with benign histopathological appearance and clinically destructive behavior. Because of the rarity of this tumor, it can easily be confused with other tumors such as paraganglioma, middle ear adenoma, adenocarcinoma, papillary carcinoma of thyroid or choroid plexus papilloma. Owing to its locally aggressive nature, it is difficult to extirpate surgically when it is large

    A nonlinear analytical model of composite plate structure with an MRE function layer considering internal magnetic and temperature fields

    Get PDF
    To better exert the vibration suppression effect of magnetorheological elastomer (MRE) embedded into a composite structure with structural and functional integration advantage, this study proposes a nonlinear analytical model of such composite plate with an MRE function (MREF) layer, accounting for internal magnetic and temperature fields for the first time. Initially, a 9-layer fiber metal laminated (FML) plate with the MREF composites, consisting of two layers of metal protective skins, two layers of fiber-reinforced polymer (FRP) and one layer of MREF, is taken as an example to describe such a modelling method. Nonlinear expressions of elastic moduli of MRE and FRP involving thermal and magnetic fitting coefficients are also proposed, followed by derivation of the energy expressions of the constituent layers by the Rayleigh-Ritz method. After the free and forced vibrations are solved, the identification procedure of fitting coefficients is described and some literature results are employed to preliminarily validate this model without consideration of internal magnetic field or temperature field or both. Finally, dynamic experiments under different magnetic and temperature conditions are undertaken. The detailed comparison of the natural frequencies and resonant responses are conducted to provide a solid validation of the model developed. It has been found that enlarging the magnetic and temperature fields both facilitate the improvement of the anti-vibration performance. Also, by further increasing the shear modulus of MRE, the volume fraction of carbonyl iron particles or the thickness ratio of the MRE layer to the overall structure, a better vibration suppression capability can be obtained

    Characteristic gene expression profiles in the progression from liver cirrhosis to carcinoma induced by diethylnitrosamine in a rat model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Liver cancr is a heterogeneous disease in terms of etiology, biologic and clinical behavior. Very little is known about how many genes concur at the molecular level of tumor development, progression and aggressiveness. To explore the key genes involved in the development of liver cancer, we established a rat model induced by diethylnitrosamine to investigate the gene expression profiles of liver tissues during the transition to cirrhosis and carcinoma.</p> <p>Methods</p> <p>A rat model of liver cancer induced by diethylnitrosamine was established. The cirrhotic tissue, the dysplasia nodules, the early cancerous nodules and the cancerous nodules from the rats with lung metastasis were chosen to compare with liver tissue of normal rats to investigate the differential expression genes between them. Affymetrix GeneChip Rat 230 2.0 arrays were used throughout. The real-time quantity PCR was used to verify the expression of some differential expression genes in tissues.</p> <p>Results</p> <p>The pathological changes that occurred in the livers of diethylnitrosamine-treated rats included non-specific injury, fibrosis and cirrhosis, dysplastic nodules, early cancerous nodules and metastasis. There are 349 upregulated and 345 downregulated genes sharing among the above chosen tissues when compared with liver tissue of normal rats. The deregulated genes play various roles in diverse processes such as metabolism, transport, cell proliferation, apoptosis, cell adhesion, angiogenesis and so on. Among which, 41 upregulated and 27 downregulated genes are associated with inflammatory response, immune response and oxidative stress. Twenty-four genes associated with glutathione metabolism majorly participating oxidative stress were deregulated in the development of liver cancer. There were 19 members belong to CYP450 family downregulated, except CYP2C40 upregulated.</p> <p>Conclusion</p> <p>In this study, we provide the global gene expression profiles during the development and progression of liver cancer in rats. The data obtained from the gene expression profiles will allow us to acquire insights into the molecular mechanisms of hepatocarcinogenesis and identify specific genes (or gene products) that can be used for early molecular diagnosis, risk analysis, prognosis prediction, and development of new therapies.</p

    SnoRNAs from the filamentous fungus Neurospora crassa: structural, functional and evolutionary insights

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SnoRNAs represent an excellent model for studying the structural and functional evolution of small non-coding RNAs involved in the post-transcriptional modification machinery for rRNAs and snRNAs in eukaryotic cells. Identification of snoRNAs from <it>Neurospora crassa</it>, an important model organism playing key roles in the development of modern genetics, biochemistry and molecular biology will provide insights into the evolution of snoRNA genes in the fungus kingdom.</p> <p>Results</p> <p>Fifty five box C/D snoRNAs were identified and predicted to guide 71 2'-O-methylated sites including four sites on snRNAs and three sites on tRNAs. Additionally, twenty box H/ACA snoRNAs, which potentially guide 17 pseudouridylations on rRNAs, were also identified. Although not exhaustive, the study provides the first comprehensive list of two major families of snoRNAs from the filamentous fungus <it>N. crassa</it>. The independently transcribed strategy dominates in the expression of box H/ACA snoRNA genes, whereas most of the box C/D snoRNA genes are intron-encoded. This shows that different genomic organizations and expression modes have been adopted by the two major classes of snoRNA genes in <it>N. crassa </it>. Remarkably, five gene clusters represent an outstanding organization of box C/D snoRNA genes, which are well conserved among yeasts and multicellular fungi, implying their functional importance for the fungus cells. Interestingly, alternative splicing events were found in the expression of two polycistronic snoRNA gene hosts that resemble the UHG-like genes in mammals. Phylogenetic analysis further revealed that the extensive separation and recombination of two functional elements of snoRNA genes has occurred during fungus evolution.</p> <p>Conclusion</p> <p>This is the first genome-wide analysis of the filamentous fungus <it>N. crassa </it>snoRNAs that aids in understanding the differences between unicellular fungi and multicellular fungi. As compared with two yeasts, a more complex pattern of methylation guided by box C/D snoRNAs in multicellular fungus than in unicellular yeasts was revealed, indicating the high diversity of post-transcriptional modification guided by snoRNAs in the fungus kingdom.</p

    Detection of a superconducting phase in a two-atom layer of hexagonal Ga film grown on semiconducting GaN(0001)

    Get PDF
    The recent observation of superconducting state at atomic scale has motivated the pursuit of exotic condensed phases in two-dimensional (2D) systems. Here we report on a superconducting phase in two-monolayer crystalline Ga films epitaxially grown on wide band-gap semiconductor GaN(0001). This phase exhibits a hexagonal structure and only 0.552 nm in thickness, nevertheless, brings about a superconducting transition temperature Tc as high as 5.4 K, confirmed by in situ scanning tunneling spectroscopy, and ex situ electrical magneto-transport and magnetization measurements. The anisotropy of critical magnetic field and Berezinski-Kosterlitz-Thouless-like transition are observed, typical for the 2D superconductivity. Our results demonstrate a novel platform for exploring atomic-scale 2D superconductor, with great potential for understanding of the interface superconductivity
    corecore