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Highlights 

 An integrated dynamic model is developed to predict the coupled impact and vibration behavior of a 

FML plate structure with a viscoelastic layer  

 A predefined the damage criterion based on a key indicator “critical impact velocity”, is proposed to 

estimate whether the hybrid composite structure is damaged subjected to different low-velocity impact 

excitations 

 A solid validation of the model developed is conducted via a series of dynamic experiments with 

different impact velocities 

 Material and geometrical parameters are discussed to improve the structural vibration and impact 

resistant capabilities  
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Abstract: The present study proposes an integrated model for prediction of the dynamic behaviors involving vibration 

and impact on hybrid fiber metal laminates embedded with a viscoelastic layer. Firstly, by combining the Reddy’s 

high-order shear deformation theory and the classical laminate theory, the structural displacement field functions are 

determined. Then, a predefined criterion, namely the damage criterion based on a key indicator “critical impact velocity”, 

is proposed to quantitatively estimate whether the composite structure is damaged subjected to impact excitation. In the 

case that meets this criterion without considering impact damage, the energy method, together with the Duhamel 

principle and the Simpson numerical integral approach, is utilized to obtain the free and forced vibration solutions. 

However, in the case that fails to satisfy this criterion, by applying the progressive quasi-static approach, the key impact 

parameters which include critical the impact contact force and displacement are successfully solved. Some numerical 

results provided in the literature are utilized to give initial validation of the model. Additionally, the detailed 

experimental tests are performed on the hybrid plate specimens to further validate the model developed. Using the 

validated model, the effects of the thickness ratio of the viscoelastic layer to the overall plate and Young's moduli of the 

viscoelastic layer on the dynamic responses are discussed. The outputs provide important references for this type of 

composite hybrid structures with improving the anti-vibration and impact resistant capabilities. 

Keywords: Hybrid fiber metal laminates; Viscoelastic layer; Load-displacement curve; Impact and vibration response; 

Critical impact velocity  
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1. Introduction 

Fiber metal laminates (FMLs) have been increasingly applied in the aerospace, shipbuilding and other industries 

[1-2]. For example, fan blades in aeroengine, solar panel in satellites and body skin parts, vertical and horizontal tail 

leading edges, rectifying panels in military and civil aircrafts [3-4], etc. As FML structures are often working in the 

complex environments and load conditions, such as bird and hailstone impact, runway debris and tool collisions, there 

are often reported cases on the severe vibration phenomena led by spinning imbalance loads, the continuously reduced 

stiffness and strength caused by dynamic loads and serious impact accidents [5-7]. Viscoelastic damping (VR) material 

has been found to possess the excellent passive damping capability with many advantages such as easy to manufacture, 

anti-aging and low-cost. If the VR material can be embedded into FMLs (e.g. as a core layer), the vibration, impact, 

noise resistance properties of the whole laminated structure can be greatly improved [8]. Therefore, it is necessary to 

study this new type of FMLs through the theoretical and numerical modeling, failure mechanism analysis and 

experimental work.  

For the past a few decades, the extensive studies have been conducted on impact or vibration characteristics of FML 

structures separately, where various modeling and analysis approaches were developed. For example, Vlot [9] firstly 

proposed an analytical model to determine the impact response of FMLs. After that, the important contributions [10-12] 

were made on improving and optimizing the analytical models to predict the contact force, displacement response, 

damage area, crack length and other mechanical parameters related to different impact velocities. Furthermore, Khalili 

[13], Shokuhfar [14], Payeganeh et al. [15] presented several theoretical models of FMLs subjected to low-velocity 

impact excitation via an assumption of two degrees-of-freedom spring-mass system. Guan et al. [16] predicted the 

variation of the maximum permanent displacement versus the normalized impact energy of FMLs based on the finite 

element (FE) model. Zhou et al. [17-18] investigated the effects of core layer density and aqueous environment on 

perforation resistance of foam-based sandwich panels by combining experimental work with numerical modelling. By 

regarding the low-velocity impact as a quasi-static process, Lin, Moriniere et al. [19-21] obtained the equivalent contact 

force functions of FML panels with a spring-mass analytical model. Based on the first order shear deformation theory, 

Shooshtari and Razavi [22] presented a novel vibration model of FMLs to predict the natural frequencies and transverse 

responses. By considering the weak bonded theory, the finite difference method and the Newmark integral method, Fu et 

al. [23-24] solved the dynamic response of FML structures with interfacial damage. By using a five-parameter fractional 

model, Iriondo et al. [25] investigated the complex moduli and loss factors of the FMLs with the self-reinforced 

polypropylene. Sessner et al. [26] employed the Dynamic Mechanical Analysis instrument to measure the temperature 

                  



and frequency dependent damping behavior of FMLs with and without elastomer. Nassir et al. [27] predicted the 

maximum force and displacement, perforation energy of FMLs and also identified the failure modes by finite element 

analysis techniques. 

Recently, researchers started to pay attention to the impact suppression issues of sandwich structures with soft 

material layers. Malekzadeh et al. [28] proposed an improved high-order impact theory and obtained the low-velocity 

impact responses of sandwich panels with flexible cores by ignoring the effect of impact damage. Shariyat and Hosseini 

[29] established an impact model of composite sandwich plates with viscoelastic cores. However, the effects of failure 

modes such as delamination, tensile fracture of fiber and matrix on the impact contact forces and energy absorption 

properties were not considered. To simulate the failure behavior of a composite sandwich plate subjected to impact 

loading, Long et al. [30] proposed a numerical model of the plate with a foam core by ignoring its fluidity. Besides the 

impact dynamics, several studies are also reported on the vibrations of composite laminated structures (including FMLs) 

with a soft material layer. Araujo et al. [31] established the finite element (FE) model of an anisotropic laminated plate 

with a viscoelastic core to evaluate the modal loss factors. Based on the virtual displacement principle, Azoti et al. [32] 

predicted the natural frequencies and loss factors of 5-layer beam structures with two auxetic viscoelastic layers. By 

assuming the same displacement field functions for the constituent layers, Yang et al. [33] presented a modified 

Fourier-Ritz solution of natural frequencies and loss factors of composite laminated plates with viscoelastic and 

functionally graded layers. Based on the first order shear deformation theory in conjunction with the FE method, Biswal 

and Mohanty [34] conducted the free vibration analysis for the multilayer sandwich shell panels with viscoelastic core. 

Li et al. [35] developed a nonlinear analytical model to evaluate the vibration suppression effect of a laminated plate 

structure with a MRE soft core accounting for both internal temperature and magnetic fields. 

Up to date, the research work usually focuses on establishing dynamic models of composite laminated structures 

with an embedded soft material layer (or core) by only dealing with either impact or vibration problems alone. To the 

best of the author’s knowledge, no work has been reported on a vibro-impact modeling technology for this type of 

structures. There is a need to investigate both impact and vibration responses with together to pave the way for 

engineering applications of such the hybrid laminated structure. To deal with this problem, an integrated dynamic model 

is developed to predict the impact and vibration behaviors of a FML plate structure with a viscoelastic layer (so called 

VC-FML plate) simultaneously. A series of experimental tests are also performed to validate the theoretical model 

developed. Using the validated model, further investigations are undertaken to evaluate the effects of low-velocity 

impact excitations with different velocities on the contact force, the natural frequency and vibrational displacement. 

Finally, important influential factors are discussed for better exerting the impact and vibration resistance of the VC-FML 

plate structures. 

                  



2. Theory and formulation 

2.1 Description of the model  

Here, a 5-layer VC-FML plate structure with a stacking sequence of metal – composite – viscoelastic material – 

composite – metal is used as an example to describe the integrated modelling approach. Fig.1 displays this theoretical 

model for analysis of coupled impact and vibration behaviors, where a global Cartesian coordinate system o-xyz is set up 

at the mid-plane of the viscoelastic layer, and a local polar coordinate system o - r z   is established at the center of 

arbitrary impact point o 1 1x y( , ) . The corresponding length, width and thickness are a, b and h, and the thickness of the 

metal layer, composite layer and viscoelastic layer is denoted by hm, hf and hv, respectively. Moreover, “1”, “2” and “3” 

are three principal directions in the composite layer, and   denotes an angle between the direction “1” in each 

composite layer and the x-axis. In addition, V represents the impact velocity of an impactor with a mass of M when it 

gets into contact with the front face of the VC-FML plate, and R1, R2 are the radius values of the contact and stretching 

areas when the contact deformation is considered. 
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Fig.1 An integrated model of a VC-FML plate structure for analysis of the coupled impact and vibration behavior. 

In the modelling process, the following assumptions need to be firstly clarified: 

(1) All individual layers in the VC-FML structure are fully bonded without relative slippage; 

(2) Impact load is regarded as low velocity impact force, so the strain rate effect is neglected; 

(3) Impact area is assumed to be a circle with R2 being the radius and contact point o  being the center. Therefore, 

the small deflection beyond this impact area is regarded as the undamaged zone; 

(4) Effects of friction and impactor deformation during the impact is ignored. 

2.2 Stress-strain relationships  

By combining the Reddy’s high-order shear deformation theory (applied to the viscoelastic layer to account for 

effects of shear deformations) and the classical laminate theory (applied to the other layers), the displacement field 

functions of the VC-FML plate can be given as 
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, s=2 represents the classical laminated 

theory, and s=3 represents the high-order shear deformation theory. Besides, t is the time, and 
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where   is the excitation frequency, 
0 0 0,  ,  ,  ,  d

x yu v w    are the displacement components, 

 = ,  ,  ,  ,  mn mn mn mn mn mnw A B C D E  are the unknown eigenvectors which need to be solved, ( )mP x  and 

( ) ( 1,..., ; 1,..., )nP y m M n N   are the orthogonal polynomials related to the fully fixed boundary conditions of four 

edges, and M and N are the truncation coefficients used in the Ritz method [36]. 

In the impact event, assume that the VC-FML plate will generate two kinds of deformed areas, namely the contact 

area and the stretched area, as shown in Fig.1. Thus, the displacement function 
0

p
w  in the polar coordinate system is 

given by 
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where 
maxw  is the maximum displacement at the impact center; vm, vf, vv are the volume fractions of metal, fiber and 

viscoelastic layers;  
22

2 0 max9 / 8 π aR FT w h , of which 
0T  is the impact energy, 

a  is the allowable interlaminar 

shear stress, and F is the impact contact force.  

In addition, the displacement variable 
0w  in the z direction is defined as 
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where 
1t  is the total time of an impact excitation.  

The stress-strain relationship at the k-th layer of the VC-FML plate is stated as 
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where 
1  and 

2  are the normal stresses along the x and y directions, and 
4 , 

5 , 
6  are the shear stresses in the yz, xz, 

xy planes, respectively, and 
i  are the corresponding strains. Besides, ( )k

ijQ  is the stiffness coefficient at the k-th layer. 

For the composite layer, 
( )k

ijQ  is expressed as follows 
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where 
1E  and 

2E  represent the Young's moduli parallel and perpendicular to the fibers, respectively, 
12G , 

13G  and 

23G  represent the shear moduli in 1-2, 1-3 and 2-3 planes, respectively, and 
12 , 

21  are the corresponding Poisson's 

ratios. 

For metal layers and the viscoelastic layer, ( )k

ijQ has the following expressions 
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where 
ME , and 

M  are Young's moduli and Poisson’s ratio of metal layers, and 
VE , and 

V  are the counterparts of 

the viscoelastic layer.  

Specifically, the corresponding residual stresses 
i  can be written as follows 
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where f

i
 is the stress of a failure layer, 

kh  is the thickness of the k-th layer, and 
iK  is the equivalent stiffness of the 

overall structure, with the following expressions 
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where 1E , 2E , 23G , 13G , 12G  and 12  are the equivalent moduli and Poisson’s ratio, respectively, with the detailed 

expressions being given by 
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where ijA  are the tensile stiffness coefficients. 

2.3 Damage criterion based on critical impact velocity 

                  



According to the energy balance, when the impactor contacts with the VC-FML plate, the impact velocity 
0V  can 

be written as 

0

2( )p

d fU T T
V

M

 
                                     (11) 

where 
pU , Td and Tf  are the strain energy generated by impact, the consumed energies in the delamination and tensile 

fracture, respectively. 

After the impactor contacts the front face of the VC-FML plate, 
*

0V  is defined as the critical impact velocity (CIV) 

when the structual damage occurs with the following expression  
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where 
*

maxw is the maximum displacement at the impact center accounting for the possible damage in different layers. 

AK , BK , DK  are the tensile stiffness, tensile flexural coupling stiffness and flexural stiffness component, respectively, 

with the detailed expressions being given by 
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where ,ij ijB D  are the corresponding stiffness coefficients, respectively. 

The Von Mises equivalent stress criterion [37] for the metal layers is 
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where  is the equivalent yield stress of the metal layer, whose magnitude is the yield tensile strength of the metal 

layer when the low-velocity impact is taken into account. 

The simplified Tsai-Hill criterion for the fiber layers is stated as [38] 
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where XT , YT and Sf  are the longitudinal and the transverse tensile strengths and the shear strength of fiber reinforced 

material. 

The Drucker-Prager stress failure criterion for the viscoelastic layer is expressed as [39] 

M

e
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where v

T  is the yield tensile strength of the viscoelastic layer, and v

s  is the yield shear strength. 

By adopting the failure criteria described above for different material layers of the VC-FML plate, Fig. 2 illustrates 

a flow chart of the iterative computational approach to determine the maximum displacement 
*

maxw . Firstly, set the initial 

value 
0

max 0w  , and asaume that e0 and c represnt the initial step size and precision coefficient, and 0 / 2 aje e  denotes 

the step size, in which ja is the number of failures in the iteration process. After the iterative calcuations start, substitute 

max

iw calculated in the i step into Eqs. (2)-(5) to obtain 1 2 6, ,   . Subsequently, bring stress results into Eqs. (14)-(16) to 

estimate whether structural damage happens. If the failure criteria are less than 1, there is no damage occurred in the 

structure, followed by letting 
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max max

i iw w e  . Otherwise, update e  to reduce this value to a half of the previous one. At 

the meantime, let 
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i iw w e  . By repeating the above interative calcuations untill e<c, the final interative value of 
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iw  is obtained that can be regarded as 
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Fig. 2. A flow chart of iterative computations for determining 
*

maxw . 

Furthermore, to construct a critical impact velocity criterion, 
AJ  is defined as a critical impact velocity ratio with 

the following expression  

2

0

* 4 * 3 * 2

max max max

1
2 ( ) ( ) ( )

A

A B D

V M
J

K w K w K w
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 
                        (17)  

By adopting the predefined criterion described in Eq. (17), one can quantitatively estimate whether the VC-FML 

plate is damaged or not. Bring different 
0V  into this equation to obtain the corresponding critical impact velocity ratio 

AJ , if 
AJ  meet the reqiurement in Eq. (17), it can be assumed that there is no damage occoured in the VC-FML plate. 

At this time, it is only needed to solve the free and forced vibrations (further description on this will be given in Section 

2.4). Otherwise, the structural damage due to impact load has to be taken into account. Thus, it is necessary to solve the 

dynamic response with coupling vibration and impact of the VC-FML structure (further discussion to be given in Section 

2.5). 

                  



2.4 Solution of free and forced vibrations without considering impact damage 

If the impact damage does not occur in the VC-FML plate, the resulting deformation remains in an elastic range. 

Therefore, only free and forced vibrations need to be considered. At this elastically contacted state between the impactor 

and the target, the total potential energy  with impact excitation is expressed as 

max

p

sU U Fw                                          (18) 

When ,  will reach the maximum value. At this time, the maximum impact contact force 

maxF  is given by 

max max/pF U w                                          (19) 

Suppose that the impact excitation load ( , , )F x y t  is expressed as below 

1max 1 1 1

1

0sin(π / ) ( ) ( ),
( , , )

0 ,

t tF t t x x y y
F x y t

t t

    
 


                       (20) 

where 
1 1( ) ( )x x y y    is the Dirac delta function. 

Since the impact velocity does not reach to 
*

0V , 1t  can be written as follows 

2

max max

1

max

2 2 2 /MV M V F w M
t

F

 
                             (21) 

Thus, the total strain energy U and kinetic energy T of the VC-FML plate are obtained as 

M F V
U U U U                                       (22a) 

M F V
T T T T                                        (22b) 

where 
M F V

, ,U U U  are the strain energies of metal layers, fiber layers and viscoelastic layer, respectively, and 
M F V

,,T T T
 

are the corresponding kinetic energies. Their detailed expressions are provided in the Appendix. 

The Lagrange function L is obtained as 

L T U                                         (23) 

By minimizing L with respect to Amn Bmn Cmn Dmn Emn, the following expressions are obtained. 

0

mn mn mn mn mn

L L L L L

A B C D E

    
    

                                 (24) 

Thus, the equation of motion of the overall structure system is expressed as 

 2
i   K C M q F                                     (25) 

where K, M and C are the stiffness, mass and damping matrices with the expressions as follows 

sU

max/ 0sU w   sU

                  



=diag ,  ,  ,  ,  
mn mn mn mn mn

U U U U U

A B C D E

     
 
     

K                       (26a) 

2=diag ,  ,  ,  ,  /
mn mn mn mn mn

T T T T T

A B C D E


     
 
     

M                    (26b) 

= C M K                                   (26c) 

where   and   are the proportional damping coefficients related to the stiffness and mass matrices. 

By ignoring C and F in Eq. (25), the free vibration equation is given by 

 2
0 K M q                                     (27) 

where q=[ Amn Bmn Cmn Dmn Emn]
T
 is the eigenvector, To solve the angular natural frequencies, Eq. (27) should has a 

nonzero or nontrivial solution. Thus,   and q can be obtained. Moreover, by substituting q into Eq. (2), each modal 

shape can also be solved. 

To study the vibration response of the VC-FML plate, the following expression is assumed 

1 1

( ) ( , ) ( )mn mn

m n

X t W x y T t
 

 

                                   (28) 

where ( , )mnW x y is the modal shape; ( )mnT t  represents the shape component. Based on the Duhamel integral principle, 

the detailed expression of ( )mnT t  is given by 

 

  

21 ( )1 1 2
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   
   

   

  
  

 



     (29) 

where   is the density; r  is the r-th natural frequency; r is the r-th modal damping ratio obtained through 

experimental tests, which is also utilized to determine    and   with the expression of 
22 r r r     . 

Finally, by substituting the calculated results from Eq. (29) into Eq. (28), the time-domain vibration response of this 

type of composite structures subjected to impact excitation load can be solved.  

2.5 Solutions of impact and vibration characteristics considering impact damage 

If the impact damage already occurs in the VC-FML plate structure, both impact and vibration parameters at this 

state need to be solved. Firstly, by applying the progressive quasi-static approach, the failure event [20] is introduced to 

establish the bending stiffness coefficient ( , )q

ijD x y  at the impact position, whose expression related to the q-th failure 

event, is defined as [40] 

1( , ) 1 ( , ) ( , 1,2,4, 5, 6)q q q

ij ij q ij dD x y D x y i j                               (30) 

where 
q  is a factor to describe the degree of damage in the q-th failure events; q

ij  is a factor to describe the 

                  



direction of damage; ( , )d x y  is the damage geometry parameter with the following expression 

 
1 0

1 12

9
( , ) ( )( )

8
d

a

K T
x y x x y y

h
 

 
                                (31) 

In the calculations, the values of q  and 
q

ij  related to the q-th failure event are predefined, as shown in Table 

B1 in Appendix B. 

The impact contact force 
qF  at the q-th failure event in the VC-FML plate is expressed as 

max/p

q qF U w                                         (32) 

Thus, the total strain energy Uq absorbed by the overall structural system is given by  

                                       1

p p

q q qU U U                                         (33) 

where p

qU  and 1

p

qU   are the strain energies related to the q-th and q-1th failure events. 

The contact radius 
1

qR  in the q-th failure event is defined as follows 

1 max max(2 )q q qR w R w                                     (34) 

where R  is the radius of hemispherical head of impactor.   

The absorbed energy 
q

dT  at the q-th failure event in the VC-FML plate is written as 

 
     

2 2

1 2
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12 219 1 ( ) 9 1 ( )
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d q q
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E hG E hG
T

 

   
 

 
                         (35) 

where IIG  is the mode II critical inter-laminar energy release rate of the adhesive caused by the delamination [41]. IL  

is the inter-laminar shear strength, 1

qE ， 2

qE  are the equivalent elastic moduli in different fiber directions of the VC-FML 

plate when the q-th failure event occurs, and 12

q ， 21

q  are the equivalent Poisson’s ratios. It is worth noting that since 

the metal layers and the viscoelastic layer are made of isotropic materials, fiber directions of “1” and “2” are taken as the 

main ones to improve the computing efficiency. 

Furthermore, the tensile fracture energy q

fT  in the q-th failure event is written as 

2

max / 3q q

f t qT w e R                                          (36) 

where te  is the energy density of the failure layer, which is closely related to the yield tensile strength and ultimate 

tensile strength in the layer studied. 

Thus, the total consumed energy 
q

aT  corresponding to the q-th failure event is expressed as 

q q q

a q d fT U T T                                          (37) 

                  



The impact velocity qV  when the q-th failure event happens is stated as 

 2 1

1 2 /q

q q aV MV T M

                                      (38) 

Finally, impact time qt  in the light of the q-th failure event is determined as follows 

2 1

1 1 1 1 max max

1

max

1
π( ) ( 2 )( 2 ) ( )

9
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



 
         


          (39) 

where a  is surface density; 
q

sK  and 
q

sC  are overall shear stiffness and viscous damping coefficients, respectively; 

1qV  , qV , 
1

max

qw 
, max

qw  and qt , 1qt   represent the corresponding velocities, the maximum displacements and the time 

at the impact center in the q-1th and q-th failure events, respectively. 

In this way, the impact contact force qF , the displacement max

qw  and the time qt  corresponding to each failure 

event q are all obtained, which are essential for plotting the concerned load-displacement curves. Meanwhile, to solve the 

vibration behavior accounting for damage effect, the total failure event q  is defined in the impact process. Due to that 

qt t , q

ijD  in Eq. (30) is substituted into Eq. (22) to solve the strain energy U  and kinetic energy T  of the VC-FML 

plate. Hence, each natural frequency   and modal shape ( , )mnW x y related to impact damage can be solved by Eqs. 

(23)-(27). Finally, let 1 qt t  and also bring the maximum contact force max max( )qF F  into Eq. (20), and then employ 

Eq. (29) combined with ( , )mnW x y  to solve the shape component ( )mnT t . On the basis of those results, the vibration 

response considering impact damage can be solved. 

2.6 Numerical validation 

Firstly, the numerical results from Ref. [29] are utilized to verify the model developed in prediction of impact 

responses. Three identical sandwich plates with the viscoelastic core and the surface-layer configuration of 

2 2 2 2 2 2[0 / 90 / 0 / core / 0 / 90 / 0 ]  are taken as the calculation examples. The theoretical results are obtained based on the 

model developed at three different impact points by ignoring the effect of metal layers. The following geometrical and 

material parameters are chosen in the calculations, i.e. E1=E2=54 GPa, G12=3.16 GPa, G13=G23=1.87 GPa, 12 =0.313 , 

f =1511 3kg / m , hf=1.584 mm, Ev=0.18 GPa, V =0.286 , V =110 3kg / m , hv=12.7 mm, and a=b=76.2 mm. 

Meanwhile, the radius, mass and initial velocity of the impactor are 12.7 mm, 1.8 kg, and 3.7 m/s, respectively. Table 1 

lists the comparisons of the maximum impact displacements, contact forces and absorbed energies of those sandwich 

plates between the present study and the Ref. [29]. It is clear that the relative deviations of the maximum displacement, 

contact force and absorbed energy are only 3.5, 3.0 and 3.8 %, respectively, which are within an acceptable range. 

Moreover, Fig. 3 presents the comparison of the impact contact force-time history and the displacement-time history 

                  



curves, with the impact point located at x1=y1=3a/4, which also show a good agreement. The minor deviation may be 

attributed to neglecting the effects of the continuity of interlaminar stress in the present model. 

Table 1. Comparison of the key parameters of three sandwich plates with viscoelastic cores between the present study and the Ref. [29] with 

different impact points. 

Impact 

point 

Max. contact force Max. displacement Absorbed energy 

Ref. [29] 

/kN 

The present  

/kN 

Deviation  

/% 

Ref. [29] 

/mm 

The present  

/mm 

Deviation 

 /% 

Ref.[29]  

/J 

The present  

/J 

Deviation 

 /% 

x1=a/2, y1=a/2 5.373 5.490 2.1 3.92 3.99 2.7 5.20 5.32 2.3 

x1=3a/4, y1=a/2 5.476 5.596 2.1 3.71 3.82 2.9 5.62 5.73 1.9 

x1=3a/4, y1=3a/4 5.608 5.783 3.0 3.60 3.67 3.5 6.02 6.26 3.8 

  
Fig. 3. Comparison of the time-history curves of (a) impact contact force and (b) displacement response between the present study and Ref. 

[29]. 

Furthermore, results from Ref. [33] are employed to validate the validity of the model developed in predicting free 

vibration results of the composite plate structure. A rectangular sandwich plate comprised of two anisotropic fiber layers 

and one viscoelastic core with four-edged-fixed boundary conditions is taken as a calculation example. The material 

parameters are already provided in Ref. [33]. In the calculations, the corresponding non-dimensional frequency results 

are obtained by the present model with ignoring the effect of metal layers. Table 2 shows the comparisons of the 

non-dimensional natural frequencies in the first four modes between the present study and the Ref. [33]. It can be seen 

that the deviations of those frequency parameters are less than 1 %, which shows a good agreement again, since the 

Rayleigh-Ritz method is adopted by both studies with the same truncation coefficients being selected. 

Table 2. Comparison of the first four non-dimensional natural frequencies of the sandwich plate with a viscoelastic core between the present 

study and the Ref. [33]. 

Category 
Modal order 

1 2 3 4 

Present study 2.131 3.745 3.745 5.371 

Ref. [33] 2.130 3.740 3.742 5.365 

Relative deviation /% 0.06 0. 19 0.08 0.11 

 

                  



3 Experimental validation  

3.1 Experimental setup 

Here, four 5-layer VC-FML plate specimens, namely specimens I to IV, with identical material and geometrical 

parameters, are measured. Each specimen includes two metal layers, two fiber layers and one viscoelastic core. The 

metal is titanium alloy (Yuanli Xin Materials Co. Ltd in China), fiber material is TC300 carbon fiber/ FRD-YG-03 resin 

with the configuration of [0 / 90 / 0 / 90 ]  (Jiujiang Diwei Composite Material Co., Ltd. in China), and viscoelastic 

material is ZN-33 rubber (Beijing Xingdaxin Special Materials Co., Ltd. in China). To ensure a good repeatability of 

experimental results, the four-edge-fixed boundary condition is chosen for the plate specimens that is constrained by a set 

of clamping fixture with M8 bolts, since it is much easier to simulate than the four-edge-simply-supported boundary 

condition. The effective length, width and thickness of those specimens after the clamping are 170, 160 and 2.6 mm, 

respectively. Besides, the material properties and thickness of each layer are shown in Table 3. 

Table 3. Material properties and thickness of each layer in the VC-FML plate specimens. 

Type 

Elastic moduli /GPa 
Density  

/kg/m3 

Poisson’s 

ratio 

Thickness  

/mm 

Ultimate strength /GPa 

E
1
, E

v
, E

m
 E

2
 G12 G13 G23 

T

M T V, ,e X   YT Sf 

Fiber layer 136 7.9 4.0 4.5 5 1780 0.30 0.5 2.21 0.049 0.135 

Viscoelastic layer 0.005 -- -- -- -- 930 0.49 1 0.007 -- -- 

Metal layer 108 -- -- -- -- 4150 0.30 0.3 0.6 -- -- 

An integrated testing system of the VC-FML plate specimens for impact and vibration experiment is shown in Fig. 4, 

which consists of three subsystems, namely the impact excitation, vibration excitation, and measuring and recording ones. 

The first subsystem involves an impactor (with total mass of 1 kg), a guide cylinder with a complete scale icon and an 

impactor-release device, with the similar design and excitation methodology utilized in Ref. [42-43]. The head of the 

impactor is designed as a “hemispherical” shape with a diameter of 8.0 mm. The height can be determined via the scale 

value marked in the guide cylinder ranged from 0 to 1200 mm. Thus, the impact velocity can be indirectly obtained with 

the kinetic energy formula of 20.5mgH mV . The second subsystem includes a PCB 086C01 modal hammer that can 

provide a pulse excitation to the specimens tested. The third subsystem consists of a contacting displacement sensor 

(model: LSM2-10), a dynamic force sensor (model: Sinocera CL-YD-305), a laser Doppler vibrometer (model: 

PDV-100), a LMS SCADAS data acquisition instrument and a Notebook PC. In the measuring process, the dynamic 

force sensor and the displacement sensor are employed to obtain the impact contact force and response signals, and the 

laser vibrometer is used to obtain the vibration response signal. All of the force, displacement and vibration response 

signals are recorded with the help of the LMS Test Lab.10b software installed in the Notebook PC. In addition, the 

following parameters are chosen in the dynamic experiment: (1) sample frequency for impact measurement: 20480 Hz; 

(2) sample frequency for vibration measurement: 4096 Hz; (3) frequency resolution for impact measurement: 0.3 Hz; (4) 

                  



frequency resolution for vibration measurement: 0.1 Hz; (5) impact velocity range: 0.98-4.82 m/s; (VI) pulse excitation 

range for vibration measurement: 0.025-0.035 kN.  

Guide cylinder 

Notebook PC Laser Vibrometer

LMS SCADAS

Laser point

Displacement 

sensor

Impactor

Clamping fixture

Modal 

hammer

Dynamic 

force sensor

 Side view of VC-FML plate

E
nlarge

Impactor-release 

device

 VC-FML 

plate 

specimen
 

Fig. 4. An integrated testing system of the VC-FML plate specimens for the coupled impact and vibration experiment. 

3.2 Comparison of theoretical and experimental results 

Before conduct the impact test, the first three natural frequencies of each plate specimen are measured by hammer 

excitation technique, with results being listed in Table 4. Then, four impact heights are applied to the specimens I to IV, 

i.e. 300, 600, 1000 and 1200 mm, corresponding to impact velocities of 2.42, 3.43, 4.43 and 4.82 m/s, respectively. Note 

that the first impact velocity is less than the CIV of 2.55 m/s (which can be determined based on the iterative method 

shown in Fig. 2 together with Eq. (12)), whereas the last three ones are all higher than the CIV. The photographs of those 

specimens after the impact test are given in Fig. 5, in which a progressively aggravated indentation can be observed on 

the surface of the VC-FML plate specimens. Meanwhile, the natural frequencies of each plate specimen after the impact 

test are measured again, with consideration of the deformation or possible damage, which are also listed in Table 4 for 

the detailed comparison. It can be observed from Fig. 5 and Table 4 that, when the impact velocity is higher than 3.43 

m/s, more clear indentations appear on the surfaces of specimens II to IV, followed by a more noticeable reduction of the 

first three natural frequencies with the maximum reduction of 27.3 % (Table 4). Thus, the plastic damage occurs in those 

three specimens. However, when the impact velocity is 2.42 m/s, the surface of specimen I has no impact damage, as the 

corresponding natural frequency results remain unchanged before and after the impact test. Therefore, it is reasonable to 

believe that the predicted CIV result is indirectly validated. 
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Fig. 5. Photographs of the VC-FML plates tested: (a) specimen I, (b) specimen II, (c) specimen III and (d) specimen IV. 

Table 4. Comparison of the experimental natural frequencies of four different plate specimens in the first three modes. 

Type 

Specimen I Specimen II Specimen III Specimen IV 

First 

mode 

Second 

mode 

Third 

mode 

First 

mode 

Second 

mode 

Third 

mode 

First 

mode 

Second 

mode 

Third 

mode 

First 

mode 

Second 

mode 

Third 

mode 

Before impact test /Hz 388.5 750.9 837.5 388.6 747.5 837.5 382.2 751.3 839.6 388.5 750 838.1 

After impact test /Hz 388.5 750.9 837.5 350.2 593.8 736.3 317.5 551.3 708.8 310.5 545 686.3 

Reduction (%) 0 0 0 -9.8 -20. 6 -12.1 -16.9 -26.6 -15.6 -20.1 -27.3 -18.1 

 

Table 5 gives the measured impact maximum contact forces and displacement amplitudes of the specimens II to IV 

subjected to different impact velocities. For the detailed comparison, the calculated results based on the proposed model 

are also listed in the same table. Additionally, the relative calculation errors between the theoretical calculations and 

experimental tests are provided in Table 5 as well. Furthermore, Fig. 6 compares the theoretical and experimental curves 

of impact contact force – time history, impact displacement – time history and load – displacement of those specimens 

subjected to impact velocities of 3.43, 4.43 and 4.82 m/s, respectively. It can be seen from Table 5 and Fig. 6 that the 

calculation errors of the maximum impact contact force and the corresponding displacement are less than 6.8 % and 

8.9 %, respectively. Along with the increment of impact velocity, the peak contact force in the load-displacement curve 

(Fig. 6c) exhibits a significant uptrend with the maximum increase of 72.4 %. Also, the predicted curves agree well with 

the experimental ones in the impact velocity range studied. Hence, the model developed has provided a good prediction 

on the impact responses of VC-FML plates. The calculation errors are probably due to that in the integrated model the 

impact area is regarded as an ideal circle, but it is mostly elliptic in fact. Another reason is that the Tsai-Hill criterion 

adopted in this study has some limits on the damage failure modes, including fiber compression failure, matrix tensile 

and compression failure. 

Table 5. Comparison of the maximum impact contact forces and displacement amplitudes of the specimens II to IV between the theoretical 

calculations and experimental tests subjected to different impact velocities. 

Type 
Specimen II  Specimen III Specimen IV 

maxF /kN maxw /mm maxF /kN maxw /mm maxF /kN maxw /mm 

Experimental 1.978 4.47 2.793 5.71 3.411 6.12 

Theoretical 1.843 4.15 2.605 5.20 3.353 5.67                                       

Calculation error/% 6.8 7.2 6.7 8.9 1.7 7.3 

                  



 
Fig. 6. Comparison of theoretical and experimental curves (a) impact contact force-time history, (b) displacement-time history and (c) 

load-displacement of the VC-FML plate specimens subjected to different impact velocities. 

To investigate the changes of vibration characteristics of the VC-FML plate structures after the impact excitation, 

Fig. 7 presents the comparison of time-domain displacement responses of the specimens I to IV between the theoretical 

calculations and experimental measurements within the time range of 0-0.04 s with different impact velocities. The 

examination of the Fig. 7 shows that the predicted variation trends of displacement responses are consistent with the 

experimental ones, which give the further validation of the proposed integrated model. 

 

    
Fig. 7 Comparison of theoretical and experimental displacement responses of the VC-FML plate: (a) specimen I, (b) specimen II, (c) 

specimen III and (d) specimen IV within the time range of 0-0.04 subjected to different impact velocities. 

Moreover, a variational mode decomposition (VMD) method [44] is adopted to decompose the response data within 

0.006-0.022 s obtained in Fig. 7. Fig. 8 presents the comparison of the theoretical and experimental time-domain 

displacement responses in the first three modes of those specimens subjected to impact in different velocities. Then, 

conduct the fast Fourier transform (FFT) on those time data, the corresponding frequency-response curves are obtained, 

as shown in Fig. 9. It is clear that the discrepancy between the theoretical predictions and experimental results on natural 

frequencies and frequency-response amplitudes of the VC-FML plate specimens associated with the first three modes are 

less than 6.0 % and 9.8 %, respectively. The possible reasons for these errors are: (1) the damping variation affected by 

impact damage is not considered; (2) in the modeling, the relative slip effects between each layer are ignored. 

 

                  



   
Fig. 8. Comparison of theoretical and experimental time-domain displacement responses in (a) the first mode, (b) the second mode and 

(c) the third mode of those specimens with different impact velocities obtained by the VMD method. 

 

Fig. 9. Comparisons of theoretical and experimental frequency-response curves associated with (a) the first mode, (b) the second mode and (c) 

the third mode of those specimens with different impact velocities obtained by the VMD method. 

To further clarify the variation trend of natural frequencies and displacement response perk of those specimens 

along with the increment of impact velocity, Fig. 10 displays the theoretical and experimental frequency and response 

results associated with the first three modes. It can be observed that as the impact velocity increases from 0 to 4.82 m/s, 

both the theoretical and the experimental natural frequency results remain unchanged when it is lower than the CIV. 

However, when it is higher than the CIV, with the increase of impact velocity, the structural natural frequencies exhibit a 

gradually declining trend due to the reduced stiffness by local indentation plastic deformations, whereas the displacement 

response perks show the uptrend. By taking the experimental results as examples, the maximum reduction of natural 

frequencies and the maximum rising degree of response perks reach 27.5 % and 61.2 %, respectively. 

 
Fig. 10. The theoretical and experimental (a) natural frequencies and (b) displacement response perks of those specimens with different 

                  



impact velocities obtained by the VMD method. 

4 Results and discussions 

4.1 The effects of thickness ratio of viscoelastic layer to the VC-FML plate on impact and vibration responses 

Based on the validated model, the effects of thickness ratio of viscoelastic layer to the VC-FML plate on the impact 

and vibration responses are investigated, which is shown in Fig. 11. In the calculations, the geometrical and material 

parameters of the VC-FML plate are listed in Table 3 with V=4.82 m/s. It is worth noting that: (1) the initial thickness 

ratio Th = hv/h is set as 20 %; (2) the total thickness of VC-FML plate is unchanged, but the thicknesses of metal layers 

and fiber layers decrease proportionally with increasing the thickness of the viscoelastic layer. Here, the maximum 

relative variation rates of the contact force (namely Dc), natural frequencies (namely Df ) and displacement response 

perks (namely Dd) are marked in Figs. 11(a)-11(c). Note that in the following discussion, if there is no specific 

explanation, Dc, Df and Dd associated with other influencing factors are all calculated and displayed in the corresponding 

figures.  

It can be observed from Fig. 11(a) that, as the thickness ratio Th increases from 20 to 70 %, the peak of contact force 

in load-displacement curves shows a downward trend with Dc = -46 %, which indicates that the impact resistance is 

reduced due to the weakened rigidity of the overall plate structure. Also, for the same reason, the normalized natural 

frequencies are decreased with Df = -34.1 % (Fig. 11b). However, the vibration suppression effect is improved, since the 

displacement response perk is lowered obviously with Dd = -82.1 % (Fig. 11c). Hence, to ensure a good impact and 

vibration resistant performance, it is recommended that the thickness ratio of viscoelastic layer to the VC-FML plate 

needs to be selected within a range of 30-40 %. This is because the contact force peak is only reduced by about 15%, but 

the displacement response perk is decreased by more than 30 % in this range. 

 
Fig. 11. Effects of thickness ratio of viscoelastic layer to the VC-FML plate on the impact and vibration responses: (a) 

load-displacement curves, (b) normalized natural frequencies and (c) normalized response perk. 

4.2 The effects of the increase multiple of Young's moduli of viscoelastic layer to the VC-FML plate on impact and 

vibration responses 

Fig. 12 presents the effects of the increase multiple of Young's moduli of viscoelastic layer 
enE  on the impact and 

vibration responses of the VC-FML plate, which are obtained with the impact velocity of 4.82 m/s and the same 

                  



geometrical and material parameters provided in Table 3. It can be seen from Fig. 12 that as the Young's moduli of 

viscoelastic layer increases by 6 times, the contact force peaks in the load-displacement curve and vibration displacement 

response perks only increase slightly (Fig. 12a). Meanwhile, the relatively small variation of natural frequencies for all 

three modes can be observed (Fig. 12b). Therefore, to improve the vibration and impact resistance capabilities of the 

VC-FML plate, it is unwise to increase the elastic modulus of the viscoelastic layer, since this value is very small 

compared to the counterparts of other constituent layers. 

   
Fig. 12. The effect of Young's moduli of viscoelastic layer on the impact and vibration responses of the VC-FML plate: (a) 

load-displacement curves, (b) the normalized natural frequencies and (c) the normalized response perks. 

5 Conclusions 

In this study, a critical impact velocity criterion is proposed to couple the vibration and impact analyses of the 

hybrid fiber metal laminates with a viscoelastic layer. On the basis of this criterion, an integrated model is developed to 

predict two types of dynamic behaviors simultaneously. In this model, the impact point can be arbitrarily selected rather 

than the center point of the plate, which expands the scope of impact excitation. Since the effect of impact damage is 

considered, the prediction accuracy of vibration and impact parameters are improved. In addition, a series of numerical 

and experimental comparison are carried out to validate the model. Based on theoretical and experimental results, 

conclusions can be drawn as follows. 

(1) When the low-velocity impact excitation exceeds the critical impact velocity (2.52 m/s) up to 4.82 m/s, the clear 

indentation appears on the surface of the composite plate specimen, followed by the further aggravated impact damage 

with the maximum increment on the contact force peak by 72.4 %. By taking the measured data as an example, the 

vibrational displacement response perks is continuously increased with the impact velocity, of which the corresponding 

rising degree is up to 61.2 %. 

(2) Along with the increment of the thickness ratio of the viscoelastic layer to the hybrid fiber metal laminates 

ranging from 20 % to 70 %, the contact force peak in the load-displacement curves and displacement response perks are 

reduced by 46.0 % and 82.1%, which displays a downtrend of impact resistance and uptrend of anti-vibration property. 

Therefore, to keep a good balance of dynamic performance, it is recommended that the thickness ratio to be selected 

within a range of 30 % - 40 %. 

                  



(3) Since the improvement of Young's moduli of the viscoelastic layer has a limited influence on both vibration and 

impact properties of the overall plate structure, it is not recommended to increase the vibration and impact resistance via 

the adjustment of Young's moduli of the embedded viscoelastic material in the hybrid fiber metal laminates. 

(4) The model proposed is not suitable for predicting high-velocity impact issues because the high strain rate effect 

and complex constitutive relationship is ignored. Meanwhile, its computational efficiency is slightly lower than that of 

general analytical model since it requires sufficient iterative calculations to solve dynamic responses. In the further 

research, the above problems need to be considered and improved, so that a more powerful integrated model can be 

established to assist in optimization design of hybrid fiber metal laminates embedded with a viscoelastic layer. 
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where mi , fi , vi  are the stresses of metal layers, fiber layers and viscoelastic layer, respectively; mi , fi , vi  

are the corresponding strains; 
m

 , 
f

 , 
v

  are the corresponding densities, A is the area of the VC-FML plate. 

Appendix B 

Table B1. Values of q  and 
q

ij  related to the q-th failure event 

Failure type q  
11

q  
12

q  
22

q  
44

q  
55

q  
66

q  

Metal layer 0.25 1 1 1 1 1 1 

Composite layer 0.06 1 2 3 1.5 1.5 1.5 

Viscoelastic layer 0.02 1 1 1 1.2 1.2 1.2 

 

 

                  


