160 research outputs found

    On some triangular inequalities and applications in 2-fuzzy metric spaces

    Get PDF
    The aim of this paper is to study some level forms of triangular inequality of 2-fuzzy metric spaces which will be useful for application to fixed point problems. For this aim, we first define the concept of 2-fuzzy pre-metric spaces that have weaker axioms than 2-fuzzy metric spaces with the fundamental properties. Then, we investigate the level form inequalities in 2-fuzzy metric spaces equvalent to the triangular inequalities of 2-fuzzy metric spaces by also analyzing the conditions under in which these are provided. Finally, we prove a fixed point theorem for 2-fuzzy metric spaces by considering the obtained level forms of triangular inequalities.Publisher's Versio

    On beta-time fractional biological population model with abundant solitary wave structures

    Get PDF
    Abstract The ongoing study deals with various forms of solutions for the biological population model with a novel beta-time derivative operators. This model is very conducive to explain the enlargement of viruses, parasites and diseases. This configuration of the aforesaid classical scheme is scouted for its new solutions especially in soliton shape via two of the well known analytical strategies, namely: the extended Sinh-Gordon equation expansion method (EShGEEM) and the Expa function method. These soliton solutions suggest that these methods have widened the scope for generating solitary waves and other solutions of fractional differential equations. Different types of soliton solutions will be gained such as dark, bright and singular solitons solutions with certain conditions. Furthermore, the obtained results can also be used in describing the biological population model in some better way. The numerical solution for the model is obtained using the finite difference method. The numerical simulations of some selected results are also given through their physical explanations. To the best of our knowledge, No previous literature discussed this model through the application of the EShGEEM and the Expa function method and supported their new obtained results by numerical analysis

    White-Box Block Cipher Implementation Based on LS-Design

    Get PDF
    Protecting secret keys from malicious observers in untrusted environments is a critical security issue. White-box cryptography suggests software protection by hiding the key in the white-box setting. One method for hiding the key in the cipher code is through encoding methods. Unfortunately, encoding methods may be vulnerable to algebraic attacks and side-channel analysis. Another technique to hide the key is (M,Z)-space hardness approach that conceals the key into a large lookup table generated with a reliable small block cipher. In (M,Z)-space-hard algorithms, the key extraction problem in the white-box setting turns into a key recovery problem in the black-box setting. One of the problems for (M,Z)-space-hard algorithms is improving run-time performance. In this study, we aim to improve the run-time performance of the existing white-box implementations. We propose an LS-design based white-box algorithm with better run-rime performance than space-hard SPNbox algorithm. Moreover, an LS-design based table creation method is designed. When we compare the run-time performance of our method with the SPNbox algorithm, we obtain 28% improvement for white-box implementation and 27% for black-box implementation for 128-bit block size. The LS-design based method is also used for 256-bit block size in the white-box setting

    Note on a Single-Machine Scheduling Problem with Sum of Processing Times Based Learning and Ready Times

    Get PDF
    In the recent 20 years, scheduling with learning effect has received considerable attention. However, considering the learning effect along with release time is limited. In light of these observations, in this paper, we investigate a single-machine problem with sum of processing times based learning and ready times where the objective is to minimize the makespan. For solving this problem, we build a branch-and-bound algorithm and a heuristic algorithm for the optimal solution and near-optimal solution, respectively. The computational experiments indicate that the branch-and-bound algorithm can perform well the problem instances up to 24 jobs in terms of CPU time and node numbers, and the average error percentage of the proposed heuristic algorithm is less than 0.5%

    Fabrication of exchange coupled hard/soft magnetic nanocomposites: Correlation between composition, magnetic, optical and microwave properties

    Full text link
    This paper studied the exchange coupling performance beside structural and microwave properties of SrFe12O19 (SFO) and x(CoTm0.01Tb0.01Fe1.98O4) (CoTmTb) (x ≤ 3.0) hard/soft ferrites nanocomposites (NCs). The structure and morphology of NCs were investigated by XRD, SEM, TEM and HR-TEM. Diffuse reflectance spectroscopic (DRS) measurements were applied on hexagonal ferrite, on spinel ferrite nanoparticles and on hard/soft NCs to specify the optical properties. Estimated Eg data are in a range between 1.32 and 1.79 eV. The magnetic properties were also inspected via measurements of magnetization (M) against magnetic field (H) at 300 K (RT) and 10 K (LT). The measurements performed at RT along with the plots of dM/dH versus H indicated that the NCs display good magnetic properties (exchange coupling behavior). The magnetic parameters such as (Ms, Mr, and Hc) show an enhancement in their values with an increasing the soft content at RT. Similarly, the maximum energy product (BH)max rises and reaches its max value for SFO/3(CoTmTb) NCs. Microwave properties of the SFO/x(CoTmTb) NCs were measured in the frequency range 33–50 GHz. From measured S11 and S21 parameters the main electrodynamic characteristics – permittivity and permeability (real and imaginary parts) were computed. © 2021 The Author(s)This work was financially supported by the Deanship for Scientific Research (Project application No. 2020-164-IRMC) of Imam Abdulrahman Bin Faisal University (IAU ? Saudi Arabia). Microwave characterization was partially supported by the Russian Science Foundation (Agreement No. 19-72-10071 from 06 Aug. 2019)

    Pollen morphology and anatomical features of Lilium (Liliaceae) taxa from Turkey

    Get PDF
    Coskuncelebi, Kamil/0000-0001-5713-6628;WOS: 000342440900005In this study, pollen grains and anatomical features of Turkish lilies were investigated under the electron (SEM) and light (LM) microscope. LM and SEM observations showed that the pollen grains are monosulcate, heteropolar, elliptical in polar view and oblate. Numerical results based on combined palynological and anatomical characters were discussed and compared with traditional taxonomic treatments. It was found that the midrib shape, mesophyll type, P/E (polar/equatorial), sulcus length, and lumina width are the most valuable traits in separating the examined taxa. the numerical analysis showed that Lilium candidum L. differs from the rest Turkish Lilium and also confirmed a close relationship between L. szovitsianum Fisch. & Av,-Lall. and L. armenum Miscz. ex Grossh. Also this study is the first report dealing with anatomical and palynological features of all Turkish lilies.RUBAP [2009.102.03.4]The authors extend their thanks to RUBAP (Project number 2009.102.03.4) for the financial support

    Current status of Great Bustard Otis tarda in Turkey: population size, distribution, movements, and threats

    Get PDF
    The Great Bustard Otis tarda is a globally threatened species with populations inhabiting the steppe zones of Turkey. In recent decades, its populations in Turkey have suffered severe declines in range and size. Although the remaining populations are in urgent need of protection, there has been no national-scale study on the species since 2009, and huge information gaps remain concerning its range, abundance, and movements in the country. Here, we combined data from five years of fieldwork together with all available sight and literature records to present up-To-date estimates of distribution and population size in Turkey, to better understand its movement patterns, to reveal its recent and historical population changes, and to assess its national extinction risk and threats. We find that the species' breeding population has shrunk by 20-29% over the last five years, and there are only 559-780 breeding Great Bustards in Turkey distributed in two discrete subpopulations. Comparison with historical records shows that the species' range has shrunk by at least 60% since the beginning of the 20th century. We suggest possible migratory routes within and through Turkey and that Turkey might have a higher regional importance for the species than previously thought. Illegal hunting, agricultural intensification, shift to irrigated crops, overgrazing, collision with powerlines, and disturbance are the most severe threats to the species in Turkey. Our national Red List assessment yields an Endangered categorisation. Further studies are needed to understand the metapopulation structure and movements of the species and to conserve its remaining populations in Turkey

    Non-canonical shedding of TNFα by SPPL2a is determined by the conformational flexibility of its transmembrane helix

    Get PDF
    Ectodomain (EC) shedding defines the proteolytic removal of a membrane protein EC and acts as an important molecular switch in signaling and other cellular processes. Using tumor necrosis factor (TNF)α as a model substrate, we identify a non-canonical shedding activity of SPPL2a, an intramembrane cleaving aspartyl protease of the GxGD type. Proline insertions in the TNFα transmembrane (TM) helix strongly increased SPPL2a non-canonical shedding, while leucine mutations decreased this cleavage. Using biophysical and structural analysis, as well as molecular dynamic simulations, we identified a flexible region in the center of the TNFα wildtype TM domain, which plays an important role in the processing of TNFα by SPPL2a. This study combines molecular biology, biochemistry, and biophysics to provide insights into the dynamic architecture of a substrate\u27s TM helix and its impact on non-canonical shedding. Thus, these data will provide the basis to identify further physiological substrates of non-canonical shedding in the future

    Domain-Independent Dynamic Programming and Constraint Programming Approaches for Assembly Line Balancing Problems with Setups

    Full text link
    We propose domain-independent dynamic programming (DIDP) and constraint programming (CP) models to exactly solve type-1 and type-2 assembly line balancing problem with sequence-dependent setup times (SUALBP). The goal is to assign tasks to assembly stations and to sequence these tasks within each station, while satisfying precedence relations specified between a subset of task pairs. Each task has a given processing time and a setup time dependent on the previous task on the station to which the task is assigned. The sum of the processing and setup times of tasks assigned to each station constitute the station time and the maximum station time is called the cycle time. For type-1 SUALBP, the objective is to minimize the number of stations, given a maximum cycle time. For type-2 SUALBP, the objective is to minimize the cycle time, given the number of stations. On a set of diverse SUALBP instances, experimental results show that our approaches significantly outperform the state-of-the-art mixed integer programming models for SUALBP-1. For SUALBP-2, the DIDP model outperforms the state-of-the-art exact approach based on logic-based Benders decomposition. By closing 76 open instances for SUALBP-2, our results demonstrate the promise of DIDP for solving complex planning and scheduling problems.Comment: 35 pages, 6 figures, submitted to Informs Journal on Computin
    corecore