6 research outputs found

    Winter locations of red-throated divers from geolocation and feather isotope signatures.

    Get PDF
    Migratory species have geographically separate distributions during their annual cycle, and these areas can vary between populations and individuals. This can lead to differential stress levels being experienced across a species range. Gathering informa-tion on the areas used during the annual cycle of red- throated divers (RTDs; Gavia stel-lata) has become an increasingly pressing issue, as they are a species of concern when considering the effects of disturbance from offshore wind farms and the associated ship traffic. Here, we use light- based geolocator tags, deployed during the summer breeding season, to determine the non- breeding winter location of RTDs from breed-ing locations in Scotland, Finland, and Iceland. We also use δ15N and δ13C isotope signatures, from feather samples, to link population- level differences in areas used in the molt period to population- level differences in isotope signatures. We found from geolocator data that RTDs from the three different breeding locations did not overlap in their winter distributions. Differences in isotope signatures suggested this spatial separation was also evident in the molting period, when geolocation data were unavailable. We also found that of the three populations, RTDs breeding in Iceland moved the shortest distance from their breeding grounds to their wintering grounds.In contrast, RTDs breeding in Finland moved the furthest, with a westward migration from the Baltic into the southern North Sea. Overall, these results suggest that RTDs breeding in Finland are likely to encounter anthropogenic activity during the win-ter period, where they currently overlap with areas of future planned developments. Icelandic and Scottish birds are less likely to be affected, due to less ship activity and few or no offshore wind farms in their wintering distributions. We also demonstrate that separating the three populations isotopically is possible and suggest further work to allocate breeding individuals to wintering areas based solely on feather samples.Migratory species have geographically separate distributions during their annual cycle, and these areas can vary between populations and individuals. This can lead to differential stress levels being experienced across a species range. Gathering information on the areas used during the annual cycle of red-throated divers (RTDs; Gavia stellata) has become an increasingly pressing issue, as they are a species of concern when considering the effects of disturbance from offshore wind farms and the associated ship traffic. Here, we use light-based geolocator tags, deployed during the summer breeding season, to determine the non-breeding winter location of RTDs from breeding locations in Scotland, Finland, and Iceland. We also use delta N-15 and delta C-13 isotope signatures, from feather samples, to link population-level differences in areas used in the molt period to population-level differences in isotope signatures. We found from geolocator data that RTDs from the three different breeding locations did not overlap in their winter distributions. Differences in isotope signatures suggested this spatial separation was also evident in the molting period, when geolocation data were unavailable. We also found that of the three populations, RTDs breeding in Iceland moved the shortest distance from their breeding grounds to their wintering grounds. In contrast, RTDs breeding in Finland moved the furthest, with a westward migration from the Baltic into the southern North Sea. Overall, these results suggest that RTDs breeding in Finland are likely to encounter anthropogenic activity during the winter period, where they currently overlap with areas of future planned developments. Icelandic and Scottish birds are less likely to be affected, due to less ship activity and few or no offshore wind farms in their wintering distributions. We also demonstrate that separating the three populations isotopically is possible and suggest further work to allocate breeding individuals to wintering areas based solely on feather samples.Peer reviewe

    Population size of Oystercatchers Haematopus ostralegus wintering in Iceland

    Get PDF
    The first ever survey of Oystercatchers wintering in Iceland found around 11 000 individuals. This is an estimated 30% of the Icelandic population, including juveniles, suggesting that approximately 26 000 Icelandic Oystercatchers migrate to western Europe in the autumn. More Oystercatchers winter in Iceland than at similar latitudes elsewhere in Europe, which may reflect the remoteness and milder winter temperatures on this oceanic island

    Lipoprotein(a) Concentration and Risks of Cardiovascular Disease and Diabetes

    Get PDF
    Publisher's version (útgefin grein)Background: Lipoprotein(a) [Lp(a)] is a causal risk factor for cardiovascular diseases that has no established therapy. The attribute of Lp(a) that affects cardiovascular risk is not established. Low levels of Lp(a) have been associated with type 2 diabetes (T2D). Objectives: This study investigated whether cardiovascular risk is conferred by Lp(a) molar concentration or apolipoprotein(a) [apo(a)] size, and whether the relationship between Lp(a) and T2D risk is causal. Methods: This was a case-control study of 143,087 Icelanders with genetic information, including 17,715 with coronary artery disease (CAD) and 8,734 with T2D. This study used measured and genetically imputed Lp(a) molar concentration, kringle IV type 2 (KIV-2) repeats (which determine apo(a) size), and a splice variant in LPA associated with small apo(a) but low Lp(a) molar concentration to disentangle the relationship between Lp(a) and cardiovascular risk. Loss-of-function homozygotes and other subjects genetically predicted to have low Lp(a) levels were evaluated to assess the relationship between Lp(a) and T2D. Results: Lp(a) molar concentration was associated dose-dependently with CAD risk, peripheral artery disease, aortic valve stenosis, heart failure, and lifespan. Lp(a) molar concentration fully explained the Lp(a) association with CAD, and there was no residual association with apo(a) size. Homozygous carriers of loss-of-function mutations had little or no Lp(a) and increased the risk of T2D. Conclusions: Molar concentration is the attribute of Lp(a) that affects risk of cardiovascular diseases. Low Lp(a) concentration (bottom 10%) increases T2D risk. Pharmacologic reduction of Lp(a) concentration in the 20% of individuals with the greatest concentration down to the population median is predicted to decrease CAD risk without increasing T2D risk.Peer Reviewe

    Kortlagning örnefna á jörðum í Leirársveit: Varðveisla og miðlun örnefna í landupplýsingakerfum

    No full text
    Örnefni eru menningarminjar. Þau eru tenging okkar við fortíðina. Í þeim birtist sýn af lífi og störfum fólks fyrri alda og sýn þess á oft harðbýla, en líka gjöfula náttúru. Þau voru vegvísar í veglausu landi og eru það að hluta til enn, þrátt fyrir góða vegi. Í huga ferðamannsins mynda þau e.k. kort af umhverfinu. Fyrrum voru örnefnin í daglegri notkun og nauðsynlegt var að kunna skil á þeim. Meðan svo var barst örnefnaþekkingin milli kynslóða í gegnum hin daglegu störf. Með minnkandi mikilvægi er hætta á að örnefnin falli í gleymsku þrátt fyrir viðleitni til að skrá þau því að staðfræðiþekkingin, þ.e. hvar örnefnin voru staðsett, hverfur einnig með tímanum. Skráning örnefna í landupplýsinga-kerfi opnar marga möguleika varðandi þau. Með hnitun þeirra á loftmyndir er mögulegt að komast sem næst réttri staðsetningu þeirra og þannig er hægt að varðveita í einu bæði örnefnin og staðfræðiþekkinguna. Einnig opnast fjölmargir möguleikar í vinnslu og birtingu örnefnanna m.a. með því að flokka þau eftir uppruna. Varðveisla menningarminja er dýr og finnst sumum tilgangslítið að varðveita hluti sem engin not eru fyrir. Þessari rannsókn er ætlað að athuga hvernig hægt sé að nota landupplýsingakerfi til að forða örnefnum frá gleymsku, með því að koma þeim í not. Á þann hátt verða þau best varðveitt

    A PRPH splice-donor variant associates with reduced sural nerve amplitude and risk of peripheral neuropathy

    No full text
    Publisher's version (útgefin grein).Nerve conduction (NC) studies generate measures of peripheral nerve function that can reveal underlying pathology due to axonal loss, demyelination or both. We perform a genome-wide association study of sural NC amplitude and velocity in 7045 Icelanders and find a low-frequency splice-donor variant in PRPH (c.996+1G>A; MAF = 1.32%) associating with decreased NC amplitude but not velocity. PRPH encodes peripherin, an intermediate filament (IF) protein involved in cytoskeletal development and maintenance of neurons. Through RNA and protein studies, we show that the variant leads to loss-of-function (LoF), as when over-expressed in a cell line devoid of other IFs, it does not allow formation of the normal filamentous structure of peripherin, yielding instead punctate protein inclusions. Recall of carriers for neurological assessment confirms that from an early age, homozygotes have significantly lower sural NC amplitude than non-carriers and are at risk of a mild, early-onset, sensory-negative, axonal polyneuropathy.We thank all participants in deCODE studies for their valuable contribution to research, especially the participants of the deCODE Health Study and the deCODE Study on Genetics of Chronic and Neuropathic Pain. We also thank the research staff at the Patient Recruitment Center, and all colleagues who contributed to phenotype ascertainment, recruitment, collection of data, sample handling, and genotyping. The financial support from the European Commission to the NeuroPain project (FP7#HEALTH-2013-602891-2) and the National Institutes of Health (R01DE022905) is acknowledged.Peer Reviewe
    corecore