26 research outputs found

    The postbinding activity of scavenger receptor class B type I mediates initiation of hepatitis C virus infection and viral dissemination.

    Get PDF
    International audienceUNLABELLED: Scavenger receptor class B type I (SR-BI) is a high-density lipoprotein (HDL) receptor highly expressed in the liver and modulating HDL metabolism. Hepatitis C virus (HCV) is able to directly interact with SR-BI and requires this receptor to efficiently enter into hepatocytes to establish productive infection. A complex interplay between lipoproteins, SR-BI and HCV envelope glycoproteins has been reported to take place during this process. SR-BI has been demonstrated to act during binding and postbinding steps of HCV entry. Although the SR-BI determinants involved in HCV binding have been partially characterized, the postbinding function of SR-BI remains largely unknown. To uncover the mechanistic role of SR-BI in viral initiation and dissemination, we generated a novel class of anti-SR-BI monoclonal antibodies that interfere with postbinding steps during the HCV entry process without interfering with HCV particle binding to the target cell surface. Using the novel class of antibodies and cell lines expressing murine and human SR-BI, we demonstrate that the postbinding function of SR-BI is of key impact for both initiation of HCV infection and viral dissemination. Interestingly, this postbinding function of SR-BI appears to be unrelated to HDL interaction but to be directly linked to its lipid transfer function. CONCLUSION: Taken together, our results uncover a crucial role of the SR-BI postbinding function for initiation and maintenance of viral HCV infection that does not require receptor-E2/HDL interactions. The dissection of the molecular mechanisms of SR-BI-mediated HCV entry opens a novel perspective for the design of entry inhibitors interfering specifically with the proviral function of SR-BI

    Receptor Complementation and Mutagenesis Reveal SR-BI as an Essential HCV Entry Factor and Functionally Imply Its Intra- and Extra-Cellular Domains

    Get PDF
    HCV entry into cells is a multi-step and slow process. It is believed that the initial capture of HCV particles by glycosaminoglycans and/or lipoprotein receptors is followed by coordinated interactions with the scavenger receptor class B type I (SR-BI), a major receptor of high-density lipoprotein (HDL), the CD81 tetraspanin, and the tight junction protein Claudin-1, ultimately leading to uptake and cellular penetration of HCV via low-pH endosomes. Several reports have indicated that HDL promotes HCV entry through interaction with SR-BI. This pathway remains largely elusive, although it was shown that HDL neither associates with HCV particles nor modulates HCV binding to SR-BI. In contrast to CD81 and Claudin-1, the importance of SR-BI has only been addressed indirectly because of lack of cells in which functional complementation assays with mutant receptors could be performed. Here we identified for the first time two cell types that supported HCVpp and HCVcc entry upon ectopic SR-BI expression. Remarkably, the undetectable expression of SR-BI in rat hepatoma cells allowed unambiguous investigation of human SR-BI functions during HCV entry. By expressing different SR-BI mutants in either cell line, our results revealed features of SR-BI intracellular domains that influence HCV infectivity without affecting receptor binding and stimulation of HCV entry induced by HDL/SR-BI interaction. Conversely, we identified positions of SR-BI ectodomain that, by altering HCV binding, inhibit entry. Finally, we characterized alternative ectodomain determinants that, by reducing SR-BI cholesterol uptake and efflux functions, abolish HDL-mediated infection-enhancement. Altogether, we demonstrate that SR-BI is an essential HCV entry factor. Moreover, our results highlight specific SR-BI determinants required during HCV entry and physiological lipid transfer functions hijacked by HCV to favor infection

    Cholesterol-lowering effect of non-viscous soluble dietary fiber NUTRIOSE (R) 6 in moderately hypercholesterolemic hamsters

    No full text
    International audienceNUTRIOSE (R) 6 is a new wheat starch-based low-digestible carbohydrate. This study investigated the effect of this soluble non-viscous fiber on cholesterol metabolism. Hamsters fed with 0.25% cholesterol-enriched diet (CHO) were given graded amounts of NUTRIOSE (R) 6, i.e. 0% (cellulose, CHO), 3% (N3), 6% (N6) or 9% (N9) (w:w). As compared to CHO diet, 9% NUTRIOSE (R) 6 significantly lowered plasma and LDL cholesterol by 14.5 and 23.8%, respectively. The LDL-cholesterol lowering effect was also significant with the 6% dose (-21.4%). NUTRIOSE (R) 6 diets prevented hepatic cholesterol accumulation (-10 to -20%) and significantly decreased bile cholesterol (-47 to -68%) and phospholipids (-30 to -45%) concentrations. The 9% NUTRIOSE (R) 6 diet significantly decreased the rate of dietary cholesterol absorption (-25%) and markedly stimulated faecal neutral sterol (+81%) and bile salts (+220%) excretion. No significant change in cholesterol 7-alpha-hydroxylase or LDL-receptor activities was observed whereas 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity was reduced by 29%. Reduced cholesterol and bile salt absorptions and lowered cholesterol synthesis are likely mechanisms underlying the cholesterol lowering effect of NUTRIOSE (R) 6. Results suggest the use of NUTRIOSE (R) 6 as a new dietary cholesterol-lowering agent that should be tested in humans as treatment and evenly prevention of mild hypercholesterolemia

    Characterization and Plasma Measurement of the WE-14 Peptide in Patients with Pheochromocytoma

    Get PDF
    International audienceGranins and their derived peptides are valuable circulating biological markers of neuroendocrine tumors. The aim of the present study was to investigate the tumoral chromogranin A (CgA)-derived peptide WE-14 and the potential advantage to combine plasma WE-14 detection with the EM66 assay and the existing current CgA assay for the diagnosis of pheochromocytoma. Compared to healthy volunteers, plasma WE-14 levels were 5.4-fold higher in patients with pheochromocytoma, but returned to normal values after surgical resection of the tumor. Determination of plasma CgA and EM66 concentrations in the same group of patients revealed that the test assays for these markers had an overall 84% diagnostic sensitivity, which is identical to that determined for WE-14. However, we found that WE-14 measurement improved the diagnostic sensitivity when combined with the results of CgA or EM66 assays. By combining the results of the three assays, the sensitivity for the diagnosis of pheochromocytoma was increased to 95%. In fact, the combination of WE-14 with either CgA or EM66 test assays achieved 100% sensitivity for the diagnosis of paragangliomas and sporadic or malignant pheochromocytomas if taken separately to account for the heterogeneity of the tumor. These data indicate that WE-14 is produced in pheochromocytoma and secreted into the general circulation, and that elevated plasma WE-14 levels are correlated with the occurrence of this chromaffin cell tumor. In addition, in association with other biological markers, such as CgA and/or EM66, WE-14 measurement systematically improves the diagnostic sensitivity for pheochromocytoma. These findings support the notion that granin-processing products may represent complementary tools for the diagnosis of neuroendocrine tumors

    EM66-containing neurones in the hypothalamic parvicellular paraventricular nucleus of the rat: No plasticity related to acute immune stress

    No full text
    International audienceOBJECTIVES AND METHODS: Neuropeptides, as the main neuroendocrine system effectors, regulate notably the response to different stressors via a secretory plasticity within their respective hypothalamic neuronal populations. The aim of the present study was to explore by immunocytochemistry the occurrence and the potential expression plasticity of the novel neuropeptide EM66 in the CRH neurones of stressed rats. RESULTS: The secretogranin II (SgII)-derived peptide EM66 is strongly expressed within hypothalamic neuroendocrine areas such as the parvocellular aspect of the paraventricular nucleus (pPVN) as well as the median eminence, suggesting a probable hypophysiotropic effect of this peptide. As a first approach to investigate such a role, we evaluated by immunohistochemistry EM66 expression within the pPVN following acute immune stress induced by lipopolysaccharide (LPS) or interleukin-1ÎČ (IL-1ÎČ) injection in rat. This study showed that EM66 is present in the pPVN but the number of EM66 immunolabeled cells did not fluctuate in this structure following LPS peripheral injection. In line with this observation, an intracerebroventricular injection of IL-1ÎČ did not provoke any significant variation of the number of intraparaventricular EM66 neurones. CONCLUSION: The present data revealed for the first time that EM66 expression would be insensitive to the central and peripheral cytokines within the neurose-cretory hypothalamic pPVN. This result indicates that EM66 does not participate to the phenotypic plasticity of hypothalamic parvicellular neurones in response to acute inflammatory stress

    Granins and their derived peptides in normal and tumoral chromaffin tissue: Implications for the diagnosis and prognosis of pheochromocytoma

    No full text
    International audiencePheochromocytomas are rare catecholamine-secreting tumors that arise from chromaffin tissue within the adrenal medulla and extra-adrenal sites. Typical clinical manifestations are sustained or paroxysmal hypertension, severe headaches, palpitations and sweating resulting from hormone excess. However, their presentation is highly variable and can mimic many other diseases. The diagnosis of pheochromocytomas depends mainly upon the demonstration of catecholamine excess by 24-h urinary catecholamines and metanephrines or plasma metanephrines. Occurrence of malignant pheochromocytomas can only be asserted by imaging of metastatic lesions, which are associated with a poor survival rate. The characterization of tissue, circulating or genetic markers is therefore crucial for the management of these tumors. Proteins of the granin family and their derived peptides are present in dense-core secretory vesicles and secreted into the bloodstream, making them useful markers for the identification of neuroendocrine cells and neoplasms. In this context, we will focus here on reviewing the distribution and characterization of granins and their processing products in normal and tumoral chromaffin cells, and their clinical usefulness for the diagnosis and prognosis of pheochromocytomas. It appears that, except SgIII, all members of the granin family i.e. CgA, CgB, SgII, SgIV–SgVII and proSAAS, and most of their derived peptides are present in adrenomedullary chromaffin cells and in pheochromocytes. Moreover, besides the routinely used CgA test assays, other assays have been developed to measure concentrations of tissue and/or circulating granins or their derived peptides in order to detect the occurrence of pheochromocytomas. In most cases, elevated levels of these entities were found, in correlation with tumor occurrence, while rarely discriminating between benign and malignant neoplasms. Nevertheless, measurement of the levels of granins and derived peptides improves the diagnostic sensitivity and may therefore provide a complementary tool for the management of pheochromocytomas. However, the existing data need to be substantiated in larger groups of patients, particularly in the case of malignant disease

    Molecular determinants of SR-B1-dependent Plasmodium sporozoite entry into hepatocytes

    No full text
    International audienceSporozoite forms of the Plasmodium parasite, the causative agent of malaria, are transmitted by mosquitoes and first infect the liver for an initial round of replication before parasite proliferation in the blood. The molecular mechanisms involved during sporozoite invasion of hepatocytes remain poorly understood. Two receptors of the Hepatitis C virus (HCV), the tetraspanin CD81 and the scavenger receptor class B type 1 (SR-B1), play an important role during the entry of Plasmodium sporozoites into hepatocytes. In contrast to HCV entry, which requires both CD81 and SR-B1 together with additional host factors, CD81 and SR-B1 operate independently during malaria liver infection. Sporozoites from human-infecting P. falciparum and P. vivax rely respectively on CD81 or SR-B1. Rodent-infecting P. berghei can use SR-B1 to infect host cells as an alternative pathway to CD81, providing a tractable model to investigate the role of SR-B1 during Plasmodium liver infection. Here we show that mouse SR-B1 is less functional as compared to human SR-B1 during P. berghei infection. We took advantage of this functional difference to investigate the structural determinants of SR-B1 required for infection. Using a structure-guided strategy and chimeric mouse/human SR-B1 constructs, we could map the functional region of human SR-B1 within apical loops, suggesting that this region of the protein may play a crucial role for interaction of sporozoite ligands with host cells and thus the very first step of Plasmodium infection
    corecore