3,267 research outputs found

    Coevolutionary Diagenesis in Tight Sandstone and Shale Reservoirs within Lacustrine-Delta Systems: A Case Study from the Lianggaoshan Formation in the Eastern Sichuan Basin, Southwest China

    Get PDF
    Tight sandstone and shale oil and gas are the key targets of unconventional oil and gas exploration in the lake-delta sedimentary systems of China. Understanding the coevolutionary diagenesis of sandstone and shale reservoirs is crucial for the prediction of reservoir quality, ahead of drilling, in such systems. Thin-section description, scanning electron microscopy (SEM), X-ray diffraction (XRD), fluid inclusion analysis, porosity and permeability tests, high-pressure mercury intrusion (HPMI) measurements and nuclear magnetic resonance tests (NMR) were used to reveal the coevolutionary diagenetic mechanisms of a sandstone and shale reservoir in the Lianggaoshan Formation of the Eastern Sichuan Basin, China. The thermally mature, organic-matter-rich, dark shale of layer3 is the most important source rock within the Lianggaoshan Formation. It started to generate abundant organic acids at the early stage of mesodiagenesis and produced abundant hydrocarbons in the early Cretaceous. Porewater with high concentrations of Ca2+ and CO32− entered the sandstone reservoir from dark shale as the shale was compacted during burial. Potassium feldspar dissolution at the boundary of the sandstone was more pervasive than at the center of the sandstone. The K+ released by potassium feldspar dissolution migrated from the sandstone into mudstone. Grain-rimming chlorite coats occurred mainly in the center of the sandstone. Some silica exported from the shale was imported by the sandstone boundary and precipitated close to the shale/sandstone boundary. Some intergranular dissolution pores and intercrystal pores were formed in the shale due to dissolution during the early stages of mesodiagenesis. Chlorite coats, which precipitated during eodiagenesis, were beneficial to the protection of primary pore space in the sandstone. Calcite cement, which preferentially precipitated at the boundary of sandstone, was not conducive to reservoir development. Dissolution mainly occurred at the early stage of mesodiagenesis due to organic acids derived from the dark shale. Calcite cement could also protect some primary pores from compaction and release pore space following dissolution. The porosity of sandstone and shale was mainly controlled by the thickness of sandstone and dark shale

    Imaging Findings of Follicular Dendritic Cell Sarcoma: Report of Four Cases

    Get PDF
    Follicular dendritic cell sarcoma is a rare malignant neoplasm and little is known about its radiological features. We present here four cases of follicular dendritic cell sarcomas and we provide the image characteristics of these tumors to help radiologists recognize this entity when making a diagnosis

    Highly Porous Hydrogen-Bond Networks from a Triptycene-Based Catechol

    Get PDF
    Solvate crystals of 9,10-dimethyl-2,3,6,7,14,15-hexa(hydroxy)-triptycene (1) form a variety of 3D hydrogen-bonded topologies, including bcu, acs, bsn and an apparently new 7-connected net. Several of these networks contain 1D or 2D arrays of solvent-filled channels, amounting to up to 60% solvent-accessible void space

    The Desensitization Gating of the MthK K+ Channel Is Governed by Its Cytoplasmic Amino Terminus

    Get PDF
    The RCK-containing MthK channel undergoes two inactivation processes: activation-coupled desensitization and acid-induced inactivation. The acid inactivation is mediated by the C-terminal RCK domain assembly. Here, we report that the desensitization gating is governed by a desensitization domain (DD) of the cytoplasmic N-terminal 17 residues. Deletion of DD completely removes the desensitization, and the process can be fully restored by a synthetic DD peptide added in trans. Mutagenesis analyses reveal a sequence-specific determinant for desensitization within the initial hydrophobic segment of DD. Proton nuclear magnetic resonance (1H NMR) spectroscopy analyses with synthetic peptides and isolated RCK show interactions between the two terminal domains. Additionally, we show that deletion of DD does not affect the acid-induced inactivation, indicating that the two inactivation processes are mutually independent. Our results demonstrate that the short N-terminal DD of MthK functions as a complete moveable module responsible for the desensitization. Its interaction with the C-terminal RCK domain may play a role in the gating process
    corecore