30 research outputs found

    Speedy Error Reconciliation

    Get PDF
    Introducing small errors in the lattice-based key exchange protocols, although it is resistant to quantum computing attacks, will cause both parties to only get roughly equal secret values, which brings uncertainty to the negotiation of the key agreement. The role of the error reconciliation mechanism is to eliminate this uncertainty and ensure that both parties can reach a consensus. This paper designs a new error reconciliation mechanism: Speedy Error Reconciliation (SER), which can efficiently complete key negotiation while ensuring key correctness and security. SER exploits the properties of the approximate secret values σ1 and σ2 shared by the two parties, and simultaneously reconciles the most and least significant bits of the secret value, and a two-bit key can be obtained by one coordination. By sharing g-bit auxiliary information between two entities, SER expands the fault tolerance interval during reconciliation and improves the success rate of consensus. To test the actual performance of SER, we integrate it into key ex- change protocols based on LWE, RLWE, and MLWE, such as Frodo and NewHope. By comparing parameters such as failure rate, security strength, and the number of CPU rounds, we find that SER performs well in various modes, especially in RLWE-based protocol. Since SER doubles the error to reconcile the least significant bit, which in turn leads to a relatively large error in SER; while the RLWE-based key ex- change scheme adopts a polynomial ring and selects a large parameter q, which is very suitable for SER. Compared with Frodo and NewHope, SER improves the reconciliation efficiency of the per-bit key by 61.6% and 797.6%, respectively

    Comparisons of serum miRNA expression profiles in patients with diabetic retinopathy and type 2 diabetes mellitus

    Get PDF
    OBJECTIVES: The aim of this study was to compare the expression levels of serum miRNAs in diabetic retinopathy and type 2 diabetes mellitus. METHODS: Serum miRNA expression profiles from diabetic retinopathy cases (type 2 diabetes mellitus patients with diabetic retinopathy) and type 2 diabetes mellitus controls (type 2 diabetes mellitus patients without diabetic retinopathy) were examined by miRNA-specific microarray analysis. Quantitative real-time polymerase chain reaction was used to validate the significantly differentially expressed serum miRNAs from the microarray analysis of 45 diabetic retinopathy cases and 45 age-, sex-, body mass index- and duration-of-diabetes-matched type 2 diabetes mellitus controls. The relative changes in serum miRNA expression levels were analyzed using the 2-ΔΔCt method. RESULTS: A total of 5 diabetic retinopathy cases and 5 type 2 diabetes mellitus controls were included in the miRNA-specific microarray analysis. The serum levels of miR-3939 and miR-1910-3p differed significantly between the two groups in the screening stage; however, quantitative real-time polymerase chain reaction did not reveal significant differences in miRNA expression for 45 diabetic retinopathy cases and their matched type 2 diabetes mellitus controls. CONCLUSION: Our findings indicate that miR-3939 and miR-1910-3p may not play important roles in the development of diabetic retinopathy; however, studies with a larger sample size are needed to confirm our findings

    Acoustics Based Monitoring and Diagnostics for the Progressive Deterioration of Helical Gearboxes

    No full text
    Abstract Gearbox condition monitoring (CM) plays a significant role in ensuring the operational reliability and efficiency of a wide range of critical industrial systems such as wind turbines and helicopters. Accurate and timely diagnosis of gear faults will improve the maintenance of gearboxes operating under sub-optimal conditions, avoid excessive energy consumption and prevent avoidable damages to systems. This study focuses on developing CM for a multi-stage helical gearbox using airborne sound. Based on signal phase alignments, Modulation Signal Bispectrum (MSB) analysis allows random noise and interrupting events in sound signals to be suppressed greatly and obtains nonlinear modulation features in association with gear dynamics. MSB coherence is evaluated for selecting the reliable bi-spectral peaks for indication of gear deterioration. A run-to-failure test of two industrial gearboxes was tested under various loading conditions. Two omnidirectional microphones were fixed near the gearboxes to sense acoustic information during operation. It has been shown that compared against vibration based CM, acoustics can perceive the responses of vibration in a larger areas and contains more comprehensive and stable information related to gear dynamics variation due to wear. Also, the MSB magnitude peaks at the first three harmonic components of gear mesh and rotation components are demonstrated to be sufficient in characterizing the gradual deterioration of gear transmission. Consequently, the combining of MSB peaks with baseline normalization yields more accurate monitoring trends and diagnostics, allowing the gradual deterioration process and gear wear location to be represented more consistently
    corecore