202 research outputs found

    Mapping specificity, cleavage entropy, allosteric changes and substrates of blood proteases in a high-throughput screen

    Get PDF
    Proteases are among the largest protein families and critical regulators of biochemical processes like apoptosis and blood coagulation. Knowledge of proteases has been expanded by the development of proteomic approaches, however, technology for multiplexed screening of proteases within native environments is currently lacking behind. Here we introduce a simple method to profile protease activity based on isolation of protease products from native lysates using a 96FASP filter, their analysis in a mass spectrometer and a custom data analysis pipeline. The method is significantly faster, cheaper, technically less demanding, easy to multiplex and produces accurate protease fingerprints. Using the blood cascade proteases as a case study, we obtain protease substrate profiles that can be used to map specificity, cleavage entropy and allosteric effects and to design protease probes. The data further show that protease substrate predictions enable the selection of potential physiological substrates for targeted validation in biochemical assays

    ‘Sciencenet’—towards a global search and share engine for all scientific knowledge

    Get PDF
    Summary: Modern biological experiments create vast amounts of data which are geographically distributed. These datasets consist of petabytes of raw data and billions of documents. Yet to the best of our knowledge, a search engine technology that searches and cross-links all different data types in life sciences does not exist

    The unconventional myosin CRINKLED and its mammalian orthologue MYO7A regulate caspases in their signalling roles

    Get PDF
    Caspases provide vital links in non-apoptotic regulatory networks controlling inflammation, compensatory proliferation, morphology and cell migration. How caspases are activated under non-apoptotic conditions and process a selective set of substrates without killing the cell remain enigmatic. Here we find that the Drosophila unconventional myosin CRINKLED (CK) selectively interacts with the initiator caspase DRONC and regulates some of its non-apoptotic functions. Loss of CK in the arista, border cells or proneural clusters of the wing imaginal discs affects DRONC-dependent patterning. Our data indicate that CK acts as substrate adaptor, recruiting SHAGGY46/GSK3-β to DRONC, thereby facilitating caspase-mediated cleavage and localized modulation of kinase activity. Similarly, the mammalian CK counterpart, MYO7A, binds to and impinges on CASPASE-8, revealing a new regulatory axis affecting receptor interacting protein kinase-1 (RIPK1)>CASPASE-8 signalling. Together, our results expose a conserved role for unconventional myosins in transducing caspase-dependent regulation of kinases, allowing them to take part in specific signalling events

    USING EARTH OBSERVATION TO SUPPORT FIRST AID RESPONSE IN CRISIS SITUATIONS– LESSONS LEARNED FROM THE EARTHQUAKE IN TÜRKIYE/SYRIA (2023)

    Get PDF
    In the early morning hours on Tuesday, February 6, 2023, the southern part of Türkiye was struck by two large and several smaller earthquakes, causing destruction and casualties over a remarkably large area. In such cases, quick response and well-informed coordination is a key factor to successful first aid responses since damage and the number of people buried or in need often remain unclear in the hours after the disaster. The German Aerospace Center (DLR) responded to the earthquake by rapidly providing a number of information products, all above very high-resolution imagery in an easy-to-use web-based application. Next to satellite and drone imagery, damage information and pre-disaster imagery were provided to the users. Drone imagery was acquired in person for Kirikhan, a city in the south of the disaster area. Access to the viewer was granted to authorized users from public authorities, humanitarian aid organisations, and research institutes. Furthermore, DLR generated information products in the fields of settlement pattern, AI based damage assessment and tectonic movements. These data, as scientifically significant as they are, were not part of the web viewer. Within this paper, the reasons will be assessed as well as the general workflow of the activation. The paper will also discuss what steps need to be taken to ensure research outcomes being integrated into information products for users in future and how to prepare for the next disaster to still ensure a quick response but with an enriched product suite

    Comparative profiling identifies C13orf3 as a component of the Ska complex required for mammalian cell division

    Get PDF
    Proliferation of mammalian cells requires the coordinated function of many proteins to accurately divide a cell into two daughter cells. Several RNAi screens have identified previously uncharacterised genes that are implicated in mammalian cell division. The molecular function for these genes needs to be investigated to place them into pathways. Phenotypic profiling is a useful method to assign putative functions to uncharacterised genes. Here, we show that the analysis of protein localisation is useful to refine a phenotypic profile. We show the utility of this approach by defining a function of the previously uncharacterised gene C13orf3 during cell division. C13orf3 localises to centrosomes, the mitotic spindle, kinetochores, spindle midzone, and the cleavage furrow during cell division and is specifically phosphorylated during mitosis. Furthermore, C13orf3 is required for centrosome integrity and anaphase onset. Depletion by RNAi leads to mitotic arrest in metaphase with an activation of the spindle assembly checkpoint and loss of sister chromatid cohesion. Proteomic analyses identify C13orf3 (Ska3) as a new component of the Ska complex and show a direct interaction with a regulatory subunit of the protein phosphatase PP2A. All together, these data identify C13orf3 as an important factor for metaphase to anaphase progression and highlight the potential of combined RNAi screening and protein localisation analyses

    The expression of the ubiquitin ligase subunit Cks1 in human breast cancer

    Get PDF
    INTRODUCTION: Loss of the cell-cycle inhibitory protein p27(Kip1 )is associated with a poor prognosis in breast cancer. The decrease in the levels of this protein is the result of increased proteasome-dependent degradation, mediated and rate-limited by its specific ubiquitin ligase subunits S-phase kinase protein 2 (Skp2) and cyclin-dependent kinase subunit 1 (Cks1). Skp2 was recently found to be overexpressed in breast cancers, but the role of Cks1 in these cancers is unknown. The present study was undertaken to examine the role of Cks1 expression in breast cancer and its relation to p27(Kip1 )and Skp2 expression and to tumor aggressiveness. METHODS: The expressions of Cks1, Skp2, and p27(Kip1 )were examined immunohistochemically on formalin-fixed, paraffin-wax-embedded tissue sections from 50 patients with breast cancer and by immunoblot analysis on breast cancer cell lines. The relation between Cks1 levels and patients' clinical and histological parameters were examined by Cox regression and the Kaplan–Meier method. RESULTS: The expression of Cks1 was strongly associated with Skp2 expression (r = 0.477; P = 0.001) and inversely with p27(Kip1 )(r = -0.726; P < 0.0001). Overexpression of Cks1 was associated with loss of tumor differentiation, young age, lack of expression of estrogen receptors and of progesterone receptors, and decreased disease-free (P = 0.0007) and overall (P = 0.041) survival. In addition, Cks1 and Skp2 expression were increased by estradiol in estrogen-dependent cell lines but were down-regulated by tamoxifen. CONCLUSION: These results suggest that Cks1 is involved in p27(Kip1 )down-regulation and may have an important role in the development of aggressive tumor behavior in breast cancer

    The mTOR inhibitor rapamycin down-regulates the expression of the ubiquitin ligase subunit Skp2 in breast cancer cells

    Get PDF
    INTRODUCTION: Loss of the cyclin-dependent kinase inhibitor p27 is associated with poor prognosis in breast cancer. The decrease in p27 levels is mainly the result of enhanced proteasome-dependent degradation mediated by its specific ubiquitin ligase subunit S phase kinase protein 2 (Skp2). The mammalian target of rapamycin (mTOR) is a downstream mediator in the phosphoinositol 3' kinase (PI3K)/Akt pathway that down-regulates p27 levels in breast cancer. Rapamycin was found to stabilize p27 levels in breast cancer, but whether this effect is mediated through changes in Skp2 expression is unknown. METHODS: The expression of Skp2 mRNA and protein levels were examined in rapamycin-treated breast cancer cell lines. The effect of rapamycin on the degradation rate of Skp2 expression was examined in cycloheximide-treated cells and in relationship to the anaphase promoting complex/Cdh1 (APC\C) inhibitor Emi1. RESULTS: Rapamycin significantly decreased Skp2 mRNA and protein levels in a dose and time-dependent fashion, depending on the sensitivity of the cell line to rapamycin. The decrease in Skp2 levels in the different cell lines was followed by cell growth arrest at G1. In addition, rapamycin enhanced the degradation rate of Skp2 and down-regulated the expression of the APC\C inhibitor Emi1. CONCLUSION: These results suggest that Skp2, an important oncogene in the development and progression of breast cancer, may be a novel target for rapamycin treatment
    corecore