49 research outputs found

    BCI controlled robotic arm as assistance to the rehabilitation of neurologically disabled patients

    Get PDF
    Purpose: Brain–computer interface (BCI)-controlled assistive robotic systems have been developed with increasing success with the aim to rehabilitation of patients after brain injury to increase independence and quality of life. While such systems may use surgically implanted invasive sensors, non-invasive alternatives can be better suited due to the ease of use, reduced cost, improvements in accuracy and reliability with the advancement of the technology and practicality of use. The consumer-grade BCI devices are often capable of integrating multiple types of signals, including Electroencephalogram (EEG) and Electromyogram (EMG) signals. Materials and Methods: This paper summarizes the development of a portable and cost-efficient BCI-controlled assistive technology using a non-invasive BCI headset “OpenBCI” and an open source robotic arm, U-Arm, to accomplish tasks related to rehabilitation, such as access to resources, adaptability or home use. The resulting system used a combination of EEG and EMG sensor readings to control the arm. To avoid risks of injury while the device is being used in clinical settings, appropriate measures were incorporated into the software control of the arm. A short survey was used following the system usability scale (SUS), to measure the usability of the technology to be trialed in clinical settings. Results: From the experimental results, it was found that EMG is a very reliable method for assistive technology control, provided that the user specific EMG calibration is done. With the EEG, even though the results were promising, due to insufficient detection of the signal, the controller was not adequate to be used within a neurorehabilitation environment. The survey indicated that the usability of the system is not a barrier for moving the system into clinical trials. Implication on rehabilitation For the rehabilitation of patients suffering from neurological disabilities (particularly those suffering from varying degrees of paralysis), it is necessary to develop technology that bypasses the limitations of their condition. For example, if a patient is unable to walk due to the unresponsiveness in their motor neurons, technology can be developed that used an alternate input to move an exoskeleton, which enables the patient to walk again with the assistance of the exoskeleton. This research focuses on neuro-rehabilitation within the framework of the NHS at the Kent and Canterbury Hospital in UK. The hospital currently does not have any system in place for self-driven rehabilitation and instead relies on traditional rehabilitation methods through assistance from physicians and exercise regimens to maintain muscle movement. This paper summarises the development of a portable and cost-efficient BCI controlled assistive technology using a non-invasive BCI headset “OpenBCI” and an open source robotic arm, U-Arm, to accomplish tasks related to rehabilitation, such as access to resources, adaptability or home use. The resulting system used a combination of EEG and EMG sensor readings to control the arm, which could perform a number of different tasks such as picking/placing objects or assist users in eating

    Dynamic Cardiolipin Synthesis Is Required for CD8<sup>+</sup> T Cell Immunity

    Get PDF
    Mitochondria constantly adapt to the metabolic needs of a cell. This mitochondrial plasticity is critical to T cells, which modulate metabolism depending on antigen-driven signals and environment. We show here that de novo synthesis of the mitochondrial membrane-specific lipid cardiolipin maintains CD8+ T cell function. T cells deficient for the cardiolipin-synthesizing enzyme PTPMT1 had reduced cardiolipin and responded poorly to antigen because basal cardiolipin levels were required for activation. However, neither de novo cardiolipin synthesis, nor its Tafazzin-dependent remodeling, was needed for T cell activation. In contrast, PTPMT1-dependent cardiolipin synthesis was vital when mitochondrial fitness was required, most notably during memory T cell differentiation or nutrient stress. We also found CD8+ T cell defects in a small cohort of patients with Barth syndrome, where TAFAZZIN is mutated, and in a Tafazzin-deficient mouse model. Thus, the dynamic regulation of a single mitochondrial lipid is crucial for CD8+ T cell immunity

    Mitochondrial Priming by CD28

    No full text
    T cell receptor (TCR) signaling without CD28 can elicit primary effector T cells, but memory T cells generated during this process are anergic, failing to respond to secondary antigen exposure. We show that, upon T cell activation, CD28 transiently promotes expression of carnitine palmitoyltransferase 1a (Cpt1a), an enzyme that facilitates mitochondrial fatty acid oxidation (FAO), before the first cell division, coinciding with mitochondrial elongation and enhanced spare respiratory capacity (SRC). microRNA-33 (miR33), a target of thioredoxin-interacting protein (TXNIP), attenuates Cpt1a expression in the absence of CD28, resulting in cells that thereafter are metabolically compromised during reactivation or periods of increased bioenergetic demand. Early CD28-dependent mitochondrial engagement is needed for T cells to remodel cristae, develop SRC, and rapidly produce cytokines upon restimulation—cardinal features of protective memory T cells. Our data show that initial CD28 signals during T cell activation prime mitochondria with latent metabolic capacity that is essential for future T cell responses

    Polyamines and eIF5A Hypusination Modulate Mitochondrial Respiration and Macrophage Activation

    Get PDF
    How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5AH) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis

    Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy

    Get PDF
    Sustained glucose and glutamine transport are essential for activated T lymphocytes to support ATP and macromolecule biosynthesis. We now show that glutamine and glucose also fuel an indispensible dynamic regulation of intracellular protein O-GlcNAcylation at key stages of T cell development, transformation and differentiation. Glucose and glutamine are precursors of UDP-GlcNAc, a substrate for cellular glycosyltransferases. Immune activated T cells contained higher concentrations of UDP-GlcNAc and increased intracellular protein O-GlcNAcylation controlled by the enzyme O-GlcNAc glycosyltransferase as compared to naĂŻve cells. We identified Notch, the T cell antigen receptor and c-Myc as key controllers of T cell protein O-GlcNAcylation, via regulation of glucose and glutamine transport. Loss of O-GlcNAc transferase blocked T cell progenitor renewal, malignant transformation, and peripheral T cell clonal expansion. Nutrient-dependent signaling pathways regulated by O-GlcNAc glycosyltransferase are thus fundamental for T cell biology

    Acetate Promotes T Cell Effector Function during Glucose Restriction.

    Get PDF
    Competition for nutrients like glucose can metabolically restrict T cells and contribute to their hyporesponsiveness during cancer. Metabolic adaptation to the surrounding microenvironment is therefore key for maintaining appropriate cell function. For instance, cancer cells use acetate as a substrate alternative to glucose to fuel metabolism and growth. Here, we show that acetate rescues effector function in glucose-restricted CD8+ T cells. Mechanistically, acetate promotes histone acetylation and chromatin accessibility and enhances IFN-Îł gene transcription and cytokine production in an acetyl-CoA synthetase (ACSS)-dependent manner. Ex vivo acetate treatment increases IFN-Îł production by exhausted T cells, whereas reducing ACSS expression in T cells impairs IFN-Îł production by tumor-infiltrating lymphocytes and tumor clearance. Thus, hyporesponsive T cells can be epigenetically remodeled and reactivated by acetate, suggesting that pathways regulating the use of substrates alternative to glucose could be therapeutically targeted to promote T cell function during cancer

    The cytotoxic T cell proteome and its shaping by the kinase mTOR

    Get PDF
    High-resolution mass spectrometry maps the cytotoxic T lymphocyte (CTL) proteome and the impact of mammalian target of rapamycin complex 1 (mTORC1) on CTLs. The CTL proteome was dominated by metabolic regulators and granzymes and mTORC1 selectively repressed and promoted expression of subset of CTL proteins (~10%). These included key CTL effector molecules, signaling proteins and a subset of metabolic enzymes. Proteomic data highlighted the potential for mTORC1 negative control of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) production in CTL. mTORC1 was shown to repress PtdIns(3,4,5)P(3) production and to determine the mTORC2 requirement for activation of the kinase Akt. Unbiased proteomic analysis thus provides a comprehensive understanding of CTL identity and mTORC1 control of CTL function

    Microsatellite polymorphism and its association with body weight and selected morphometrics of farm red fox (Vulpes vulpes L.)

    Get PDF
    Polymorphism of 30 canine-derived microsatellites was studied in a group of 200 red foxes kept on 2 Polish farms. 22 out of 30 microsatellites were selected to study association between marker genotypes and body weight (BW), body length (BL), body circumference (BC), tail length (TL), ear height (EH), length of the right front limb (FRLL), length of the right rear limb (RRLL), length of the right front foot (FRFL) and length of the right rear foot (RRFL). A total of 112 alleles and 243 genotypes were found at 22 autosomal microsatellite loci. Three monomorphic loci deemed as uninformative were excluded from the study. The association between marker genotypes and the studied traits was analysed using general linear model (GLM) procedure and least squares means (LSM). Linkage disequilibrium (LD) was estimated to assess non-random association between microsatellite loci. Out of 19 microsatellites studied four markers showed no association with the studied traits, three markers had a significant effect on one trait, and another three markers had significant effect on two traits. Among ten microsatellites with significant effect on four economically important traits (BW, BL, BC, TL) four were associated with two characters: marker FH2613 with BW and BC, marker FH2097withBL and BC, marker ZUBECA6 with BW and BC, whereas marker REN75M10 was associated with BL and TL. The strongest LD (r(2) ranged from 0.15 to 0.33) was estimated between nine loci with significant effect on economically important traits (BW, BL, BC, TL)
    corecore