129 research outputs found

    Structural determinants influencing halogen bonding : a case study on azinesulfonamide analogs of aripiprazole as 5-HT1A, 5-HT7, and D2 receptor ligands

    Get PDF
    This work was supported by Grant KNW-1-015/K/7/O from Medical University of Silesia, Katowice, Poland. Calculations have been carried out using resources provided by Wroclaw Centre for Networking and Supercomputing (http://wcss.pl), Grant No. 382.A series of azinesulfonamide derivatives of long-chain arylpiperazines with variable-length alkylene spacers between sulfonamide and 4-arylpiperazine moiety is designed, synthesized, and biologically evaluated. In vitro methods are used to determine their affinity for serotonin 5-HT1A, 5-HT6, 5-HT7, and dopamine D2 receptors. X-ray analysis, two-dimensional NMR conformational studies, and docking into the 5-HT1A and 5-HT7 receptor models are then conducted to investigate the conformational preferences of selected serotonin receptor ligands in different environments. The bent conformation of tetramethylene derivatives is found in a solid state, in dimethyl sulfoxide, and as a global energy minimum during conformational analysis in a simulated water environment. Furthermore, ligand geometry in top-scored complexes is also bent, with one torsion angle in the spacer (τ2) in synclinal conformation. Molecular docking studies indicate the role of halogen bonding in complexes of the most potent ligands and target receptors.[SU

    New triazine derivatives as serotonin 5HT65-HT_6 receptor ligands

    Get PDF
    Since the number of people with Alzheimer’s disease (AD) continues to rise, new and effective drugs are urgently needed to not only slow down the progression of the disease, but to stop or even prevent its development. Serotonin 5-HT6 receptor (5-HT6R) ligands are still a promising therapeutic target for the treatment of AD. 1,3,5-Triazine derivatives, as novel structures lacking an indole or a sulfone moiety, have proven to be potent ligands for this receptor. In present work, new derivatives of the compound MST4 (4-((2-isopropyl-5-methylphenoxy)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine), the potent 5-HT6R antagonist (Ki = 11 nM) with promising ADMET and in vivo properties, were designed. The synthesized compounds were tested for their affinity towards 5-HT6R and other receptor (off)targets (serotonin 5-HT2A, 5-HT7 and dopamine D2). Based on the new results, 4-(2-tert-butylphenoxy)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (3) was selected for extended in vitro studies as a potent and selective 5-HT6R ligand (Ki = 13 nM). Its ability to permeate the blood–brain barrier (BBB) and its hepatotoxicity were evaluated. In addition, X-ray crystallography and solubility studies were also performed. The results obtained confirm that 6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine derivatives, especially compound 3, are promising structures for further pharmacological studies as 5-HT6R ligands

    Preliminary evaluation of central nervous system activity of (E)-N-2-methyl-3-phenylprop-2-enyl ((E)-N- α-methylcinnamyl) derivatives of selected aminoalkanols

    Get PDF
    A series of (E)-α-methylcinnamyl derivatives of selected aminoalkanols was synthetized and evaluated for activity in central nervous system. All compounds were tested as anticonvulsants and one additionally in antidepressant- and anxiolytic-like assays. The compounds possessed pharmacophoric elements regarded as beneficial for anticonvulsant activity: hydrophobic unit and two hydrogen bonds donor/acceptor features. The compounds were verified in mice after intraperitoneal (i.p.) administration in maximal electroshock (MES) and subcutaneous pentetrazole (scPTZ) induced seizures as well as neurotoxicity assessments. Eight of the tested substances showed protection in MES test at the dose of 100 mg/kg. The derivative of 2 aminopropan-1-ol was also tested in 6-Hz test in mice i.p. and showed anticonvulsant activity but at the same time the neurotoxicity was noted. The derivative of 2-amino-1-phenylethanol which possessed additional hydrophobic unit in aminoalkanol moiety was tested in other in vivo assays to evaluate antidepressant- and anxiolytic-like activity. The compound proved beneficial properties especially as anxiolytic agent remaining active in four-plate test in mice at the dose of 2.5 mg/kg (i.p.). In vitro biotransformation studies of 2-amino-1-phenylethanol derivative carried out in mouse liver microsomal assay indicated two main metabolites as a result of aliphatic and aromatic hydroxylation or aliphatic carbonylation. To identify possible mechanism of action, we evaluated serotonin receptors (5-HT1A, 5-HT6 and 5-HT7) binding affinities of the compounds but none of them proved to bind to any of tested receptors

    New spirohydantoin derivatives : synthesis, pharmacological evaluation and molecular modeling study

    Get PDF
    A series of new arylpiperazinylpropyl derivatives of 8/6-phenyl-1,3-diazaspiro[4.5]decan-2,4-dione and spiro[imidazolidine-4,1í-indene/naphthalene]-2,5-dione was synthesized and their affinity was evaluated toward serotonin 5-HT1A, 5-HT2A, 5-HT7 receptors, dopaminergic D2, D3 receptors, adrenergic α1 receptors, and serotonin transporter (SERT). The highest affinity for serotonin 5-HT1A/2A/7 receptors was found for compounds containing a tetralin or indane moiety in the imide part. Among these, two compounds (19, 20) were selected for further pharmacological in vivo studies. A binding mode of representative molecule 19, which behaved as a 5-HT1A agonist and weak 5-HT7 antagonist in the site of 5-HT1A/7, was also analyzed in computationa studies. Moreover, two highly selective (9 and 11) 5-HT2A receptor antagonists were obtained

    Solid-Phase Synthesis of Arylpiperazine Derivatives and Implementation of the Distributed Drug Discovery (D3) Project in the Search for CNS Agents

    Get PDF
    We have successfully implemented the concept of Distributed Drug Discovery (D3) in the search for CNS agents. Herein, we demonstrate, for the first time, student engagement from different sites around the globe in the development of new biologically active compounds. As an outcome we have synthesized a 24-membered library of arylpiperazine derivatives targeted to 5-HT1A and 5-HT2A receptors. The synthesis was simultaneously performed on BAL-MBHA-PS resin in Poland and the United States, and on BAL-PS-SynPhase Lanterns in France. The D3 project strategy opens the possibility of obtaining potent 5-HT1A/5-HT2A agents in a distributed fashion. While the biological testing is still centralized, this combination of distributed synthesis with screening will enable a D3 network of students world-wide to participate, as part of their education, in the synthesis and testing of this class of biologically active compounds

    The 1,3,5-triazine derivatives as innovative chemical family of 5-HT6 serotonin receptor agents with therapeutic perspectives for cognitive impairment

    Get PDF
    Among serotonin receptors, the 5-HT6 subtype is the most controversial and the least known in the field of molecular mechanisms. The 5-HT6R ligands can be pivotal for innovative treatment of cognitive impairment, but none has reached pharmacological market, predominantly, due to insufficient “druglikeness” properties. Recently, 1,3,5-triazine-piperazine derivatives were identified as a new chemical family of potent 5-HT6R ligands. For the most active triazine 5-HT6R agents found (1-4), a wider binding profile and comprehensive in vitro evaluation of their drug-like parameters as well as behavioral studies and an influence on body mass in vivo were investigated within this work. Results indicated the most promising pharmacological/druglikeness profiles for 4-((1H-indol-3-yl)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (3) and 4-((2-isopropyl-5-methylphenoxy)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (4), which displayed a significant procognitive action and specific anxiolytic-like effects in the behavioral tests in vivo together with satisfied pharmaceutical and safety profiles in vitro. The thymol derivative (4) seems to be of higher importance as a new lead candidate, due to the innovative, non-indole and non-sulfone structure with the best 5-HT6R binding properties
    corecore