11 research outputs found

    Impaired neural development in a zebrafish model for Lowe syndrome

    Get PDF
    Lowe syndrome, which is characterized by defects in the central nervous system, eyes and kidneys, is caused by mutation of the phosphoinositide 5-phosphatase OCRL1. The mechanisms by which loss of OCRL1 leads to the phenotypic manifestations of Lowe syndrome are currently unclear, in part, owing to the lack of an animal model that recapitulates the disease phenotype. Here, we describe a zebrafish model for Lowe syndrome using stable and transient suppression of OCRL1 expression. Deficiency of OCRL1, which is enriched in the brain, leads to neurological defects similar to those reported in Lowe syndrome patients, namely increased susceptibility to heat-induced seizures and cystic brain lesions. In OCRL1-deficient embryos, Akt signalling is reduced and there is both increased apoptosis and reduced proliferation, most strikingly in the neural tissue. Rescue experiments indicate that catalytic activity and binding to the vesicle coat protein clathrin are essential for OCRL1 function in these processes. Our results indicate a novel role for OCRL1 in neural development, and support a model whereby dysregulation of phosphoinositide metabolism and clathrin-mediated membrane traffic leads to the neurological symptoms of Lowe syndrome

    The Cellular and Physiological Functions of the Lowe Syndrome Protein OCRL1.

    No full text
    Phosphoinositide lipids play a key role in cellular physiology, participating in a wide array of cellular processes. Consequently, mutation of phosphoinositide-metabolizing enzymes is responsible for a growing number of diseases in humans. Two related disorders, oculocerebrorenal syndrome of Lowe (OCRL) and Dent-2 disease, are caused by mutation of the inositol 5-phosphatase OCRL1. Here, we review recent advances in our understanding of OCRL1 function. OCRL1 appears to regulate many processes within the cell, most of which depend upon coordination of membrane dynamics with remodeling of the actin cytoskeleton. Recently developed animal models have managed to recapitulate features of Lowe syndrome and Dent-2 disease, and revealed new insights into the underlying mechanisms of these disorders. The continued use of both cell-based approaches and animal models will be key to fully unraveling OCRL1 function, how its loss leads to disease and, importantly, the development of therapeutics to treat patients

    The Lowe syndrome protein OCRL1 is required for endocytosis in the zebrafish pronephric tubule.

    No full text
    Lowe syndrome and Dent-2 disease are caused by mutation of the inositol 5-phosphatase OCRL1. Despite our increased understanding of the cellular functions of OCRL1, the underlying basis for the renal tubulopathy seen in both human disorders, of which a hallmark is low molecular weight proteinuria, is currently unknown. Here, we show that deficiency in OCRL1 causes a defect in endocytosis in the zebrafish pronephric tubule, a model for the mammalian renal tubule. This coincides with a reduction in levels of the scavenger receptor megalin and its accumulation in endocytic compartments, consistent with reduced recycling within the endocytic pathway. We also observe reduced numbers of early endocytic compartments and enlarged vacuolar endosomes in the sub-apical region of pronephric cells. Cell polarity within the pronephric tubule is unaffected in mutant embryos. The OCRL1-deficient embryos exhibit a mild ciliogenesis defect, but this cannot account for the observed impairment of endocytosis. Catalytic activity of OCRL1 is required for renal tubular endocytosis and the endocytic defect can be rescued by suppression of PIP5K. These results indicate for the first time that OCRL1 is required for endocytic trafficking in vivo, and strongly support the hypothesis that endocytic defects are responsible for the renal tubulopathy in Lowe syndrome and Dent-2 disease. Moreover, our results reveal PIP5K as a potential therapeutic target for Lowe syndrome and Dent-2 disease

    Electron microscopy analysis of endocytic compartments in OCRL1 deficient pronephros.

    No full text
    <p>A. Block face scanning electron microscopy (SEM) images of transverse sections through the zebrafish proximal pronephric tubule of wild-type and <i>ocrl<sup>-/-</sup></i> mutant 72 hpf embryos. The apical membrane, identified by numerous microvilli, lines the central lumen of the pronephric tubule. Vacuolar endosomes are false coloured in green. B and D. Block face SEM showing apical endocytic vesicles at the apical pole of pronephric proximal tubule cells (false coloured in orange in top row) (B) and vacuolar endosomes (false coloured in green in top row) (D). C and E. Quantification of endocytic compartments. Numbers of apical endocytic vesicles were counted per region of interest (C), and vacuolar endosome number, size and total area were counted per entire section (E). Data are presented as the mean Ā± SD. Statistical analysis was performed using the unpaired t-test. ***p < 0.0001. Scale bars represent 5 Ī¼m (A), 2 Ī¼m (D) or 1 Ī¼m (B).</p

    Reduced endosomal staining in OCRL1 deficient pronephros.

    No full text
    <p>A-C. Confocal transverse sections of the zebrafish proximal pronephric tubule of 72 hpf wild-type (WT) and <i>ocrl<sup>-/-</sup></i> mutant embryos labelled with antibodies to EEA1 or endofin (A), or to GFP (B and C) to detect expressed GFP-Rab11 (B) or GFP-Rab7 (C). White dashed lines indicate the outline of pronephric tubules. Scale bars represent 10 Ī¼m.</p

    Pronephric cilia in <i>ocrl<sup>-/-</sup></i> zebrafish.

    No full text
    <p>A. Confocal images of pronephric cilia, detected using anti-acetylated tubulin antibody, in wild-type, <i>ocrl<sup>-/-</sup></i> mutant, control morphant or OCRL1 morphant zebrafish embryos (26hpf). B. Fluorescence dissecting microscope image of excretion of Alexa 488-10 kDa dextran from the cloacae of zebrafish embryos (72hpf). Bottom panels show cloacae immediately after injection (left) and excreting dextran 30ā€“60s after injection (wild-type middle, <i>ocrl<sup>-/-</sup></i> right). Dextran excretion was identical in control and <i>ocrl<sup>-/-</sup></i> embryos (20 embryos of each genotype, 2 independent experiments). C. Brightfield images of wild-type (WT), <i>ocrl<sup>-/-</sup></i> mutant or IFT88/polaris morphant (MO) embryos. The morphants were injected with different concentrations of morpholino as indicated. Embryos were imaged using brightfield microscopy. Bottom panel shows <i>ocrl<sup>-/-</sup></i> mutant and polaris morphant (injected with 4 ng MO) and zoom of boxed area. The arrowhead indicates a pronephric cyst in the polaris morphant. D. Confocal images of pronephric cilia, detected using anti-acetylated tubulin antibody, in wild-type (WT), <i>ocrl<sup>-/-</sup></i> mutant or IFT88/polaris morphant (MO) embryos. E. Wild-type (WT), <i>ocrl<sup>-/-</sup></i> mutant and IFT88/polaris morphant embryos were injected with Alexa 488-10 kDa dextran (green) and pronephric accumulation after 2.5 h monitored by fluorescence microscopy. The pronephric tubules are indicated with a dashed line. Uptake was quantitated as indicated. Data are presented as the mean Ā± SEM. Statistical analysis was performed using the Pearsonā€™s chi-squared test. ***p < 0.0001, **p < 0.001, *p < 0.01. F. Confocal transverse sections of the zebrafish proximal pronephric tubule of 72 hpf wild type and <i>double bubble (dbb</i>) cilia mutant showing 10 kDa-FD uptake into endocytic compartments in pronephric cells 2h after injection. Scale bars represent 10 Ī¼m (A and D).</p

    Impairment of pronephric uptake in OCRL1 deficient zebrafish embryos.

    No full text
    <p>A. Confocal images of wild-type (WT), <i>ocrl<sup>-/-</sup></i> mutant, control morphant or OCRL1 morphant 72 hpf zebrafish embryos that were injected with Alexa 488-10 kDa dextran (white) and imaged after 2.5 h. The pronephric tubules are indicated with a green dashed line. B. Top: Quantification of pronephric uptake of 10 kDa (2.5 h) or 70 kDa dextran (4 h) in control, <i>ocrl<sup>-/-</sup></i> mutant and morphant embryos. Bottom: Representation of normal, low and no dextran uptake in injected. C. Wild-type (WT) and <i>ocrl<sup>-/-</sup></i> mutant embryos were injected with RAP-Cy3 (red) and pronephric accumulation after 60 min monitored by fluorescence microscopy. D. Quantification of pronephric uptake of RAP-Cy3 in control and <i>ocrl<sup>-/-</sup></i> mutant embryos. Data are presented as the mean Ā± SD. Statistical analysis was performed using the Pearsonā€™s chi-squared test. ***p < 0.0001.</p

    Rescue of the pronephric uptake defect in OCRL1 deficient embryos by suppression of PIP5K.

    No full text
    <p>A. RT-PCR detection of PIP5KĪ±b and eIF1Ī± in wild-type and <i>ocrl<sup>-/-</sup></i> embryos at the indicated developmental timepoints. B, left. RT-PCR of PIP5KĪ±b and eIF1Ī± in 3 dpf zebrafish embryos injected with the indicated amount of PIP5KĪ±b splice morpholino. The asterisk indicates morpholino-induced abnormally spliced PIP5KĪ±b transcript. Right, mortality of PIP5KĪ±b morpholino-injected embryos at 24 hpf. C. PtdIns(4,5)P<sub>2</sub> levels in untreated wild-type or <i>ocrl<sup>-/-</sup></i> embryos or embryos injected with 2 ng PIP5KĪ±b morpholino. Data are presented as the mean Ā± SE (n = 6ā€“13). Statistical analysis was performed using the one-way ANOVA with a post-hoc Dunnettā€™s multiple comparisons test. *p < 0.05. D. Images of pronephric uptake of Alexa 488-10 kDa dextran (green) in wild type (WT) or <i>ocrl<sup>-/-</sup></i> embryos or WT or <i>ocrl<sup>-/-</sup></i> embryos injected with 2 ng PIP5KĪ±b morpholino. The pronephric tubules are indicated with a green dashed line. E. Quantification of pronephric uptake of Alexa 488-10 kDa dextran in each of the indicated embryo types. F. Transverse confocal images showing megalin labelling in the proximal pronephric region of 72 hpf wild-type (WT), <i>ocrl<sup>-/-</sup></i> or <i>ocrl<sup>-/-</sup></i> embryos injected with 2 ng PIP5KĪ±b morpholino (top) and quantitation of megalin fluorescence (bottom). G. Transverse confocal images showing EEA1 labelling in the proximal pronephric region of 72 hpf wild-type (WT), <i>ocrl<sup>-/-</sup></i> or <i>ocrl<sup>-/-</sup></i> embryos injected with 2 ng PIP5KĪ±b morpholino. H. Block face scanning electron microscopy images of transverse sections through the proximal pronephric tubule of wild-type (WT), <i>ocrl<sup>-/-</sup></i> or <i>ocrl<sup>-/-</sup></i> embryos injected with 2 ng PIP5KĪ±b morpholino. The bottom row is a colour-coded version of the top row, with vacuaolar endosomes false coloured in green. I. Quantification of vacuolar endosome number, size and total area. Data in E, F and I are presented as the mean Ā± SEM. Statistical analysis was performed using the Pearsonā€™s chi-squared test. ***p < 0.0001, **p < 0.001, *p < 0.01. Scale bars represent 10 Ī¼m (F, G) and 2 Ī¼m (H).</p

    Megalin transcript and protein analysis in OCRL1-deficient zebrafish embryos.

    No full text
    <p>A. Transverse confocal images of the proximal pronephric region of wild-type (WT) and <i>ocrl<sup>-/-</sup></i> mutant 72 hpf embryos labelled with anti-megalin antibodies. The white dashed lines indicate the outline of pronephric tubules. Arrowheads indicate sub-apical punctate and vacuolar megalin staining. B. Transverse confocal images of the proximal pronephric region of 72 hpf <i>ocrl<sup>-/-</sup></i> embryos labelled with antibodies to megalin (green in left panel, red in right panel) and EEA1 (red) or GFP (gfp-, green) to detect ectopically expressed Rab5 or Rab7. mApple (a-) tagged Rab11 is in red. Arrowheads indicate colocalisation. C. Quantification of the relative fluorescence levels of megalin in confocal transverse sections of the indicated embryo types. D. Western blot of 72 hpf wild-type (WT) or <i>ocrl<sup>-/-</sup></i> embryos with antibodies to megalin and tubulin. Three equivalent samples for genotype are analyzed. E. In situ hybridisation of megalin transcript in 48 hpf (top) and 72 hpf (bottom) wild-type (WT) or <i>ocrl<sup>-/-</sup></i> embryos. F. Quantitative RT-PCR (qPCR) of megalin transcript levels in wild type and <i>ocrl<sup>-/-</sup></i> embryos at 72 hpf. Data are presented as the mean Ā± SD. Statistical analysis was performed using the unpaired t-test. ***p < 0.0001. Scale bars in A, B and E represent 10, 2 and 20 Ī¼m respectively.</p
    corecore