5 research outputs found

    Oxidation of Hydrocarbons on the Surface of Tin Dioxide Chemical Sensors

    Get PDF
    The paper presents the results of our investigation on the effect of the molecular structure of organic vapors on the characteristics of resistive chemical gas sensors. The sensors were based on tin dioxide and prepared by means of thick film technology. The electrical and catalytic examinations showed that the abstraction of two hydrogen atoms from the organic molecule and formation of a water in result of reaction with a chemisorbed oxygen ion, determine the rate of oxidation reactions, and thus the sensor performance. The rate of the process depends on the order of carbon atoms and Lewis acidity of the molecule. Therefore, any modification of the surface centers of a sensor material, modifies not only the sensor sensitivity, but also its selectivity

    Solution-processed LiF for work function tuning in electrode bilayers

    Get PDF
    Although ambient processing is the key to low-cost organic solar cell production, high vacuum thermal evaporation of LiF is often a limiting step, motivating the exploration of solution processing of LiF as an alternative electrode interlayer. Sub-monolayer films are realized with the assistance of polymeric micelle reactors that enable LiF particle deposition with controlled nanoscale surface coverage. Scanning Kelvin probe reveals a work function tunable with nanoparticle coverage, with higher values than that of bare tin-doped indium oxide

    Solution-Processed LiF for Work Function Tuning in Electrode Bilayers

    No full text
    Although ambient processing is the key to low-cost organic solar cell production, high-vacuum thermal evaporation of LiF is often a limiting step, motivating the exploration of solution processing of LiF as an alternative electrode interlayer. Submonolayer films are realized with the assistance of polymeric micelle reactors that enable LiF particle deposition with controlled nanoscale surface coverage. Scanning Kelvin probe reveals a work function tunable with nanoparticle coverage with higher values than that of bare indium tin oxide (ITO)
    corecore