73 research outputs found

    Analysis and compensation for errors in electrical impedance tomography images and ventilation-­related measures due to serial data collection

    Get PDF
    Electrical impedance tomography (EIT) is increasingly being used as a bedside tool for monitoring regional lung ventilation. However, most clinical systems use serial data collection which, if uncorrected, results in image distortion, particularly at high breathing rates. The objective of this study was to determine the extent to which this affects derived parameters. Raw EIT data were acquired with the GOE­MF II EIT device (CareFusion, Höchberg, Germany) at a scan rate of 13 images/s during both spontaneous breathing and mechanical ventilation. Boundary data for periods of undisturbed tidal breathing were corrected for serial data collection errors using a Fourier based algorithm. Images were reconstructed for both the corrected and original data using the GREIT algorithm, and parameters describing the filling characteristics of the right and left lung derived on a breath by breath basis. Values from the original and corrected data were compared using paired t­ tests. Of the 33 data sets, 23 showed significant differences in filling index for at least one region, 11 had significant differences in calculated tidal impedance change and 12 had significantly different filling fractions (p = 0.05). We conclude that serial collection errors should be corrected before image reconstruction to avoid clinically misleading results

    Coulomb explosion imaging of small polyatomic molecules with ultrashort x-ray pulses

    Get PDF
    Ultrashort x-ray pulses from free-electron lasers can efficiently charge up and trigger the full fragmentation of molecules. By coincident detection of up to five ions resulting from rapid Coulomb explosion of highly charged iodomethane, we show that the full three-dimensional equilibrium geometry of this prototypical polyatomic system can be determined from the measured ion momenta with the help of a charge buildup model. Supported by simulations of how the ion momenta would reflect specific changes in molecular bond lengths and angles, we demonstrate that Coulomb-explosion imaging with ultrashort x-ray pulses is a promising technique for recording movies of multidimensional nuclear wave packets, including hydrogen motions

    Investigating charge-up and fragmentation dynamics of oxygen molecules after interaction with strong X-ray free-electron laser pulses

    Get PDF
    During the last decade, X-ray free-electron lasers (XFELs) have enabled the study of light–matter interaction under extreme conditions. Atoms which are subject to XFEL radiation are charged by a complex interplay of (several subsequent) photoionization events and electronic decay processes within a few femtoseconds. The interaction with molecules is even more intriguing, since intricate nuclear dynamics occur as the molecules start to dissociate during the charge-up process. Here, we demonstrate that by analyzing photoelectron angular emission distributions and kinetic energy release of charge states of ionic molecular fragments, we can obtain a detailed understanding of the charge-up and fragmentation dynamics. Our novel approach allows for gathering such information without the need of complex ab initio modeling. As an example, we provide a detailed view on the processes happening on a femtosecond time scale in oxygen molecules exposed to intense XFEL pulses

    X-ray multiphoton-induced Coulomb explosion images complex single molecules

    Get PDF
    Following structural dynamics in real time is a fundamental goal towards a better understanding of chemical reactions. Recording snapshots of individual molecules with ultrashort exposure times is a key ingredient towards this goal, as atoms move on femtosecond (10-15 s) timescales. For condensed-phase samples, ultrafast, atomically resolved structure determination has been demonstrated using X-ray and electron diffraction. Pioneering experiments have also started addressing gaseous samples. However, they face the problem of low target densities, low scattering cross sections and random spatial orientation of the molecules. Therefore, obtaining images of entire, isolated molecules capturing all constituents, including hydrogen atoms, remains challenging. Here we demonstrate that intense femtosecond pulses from an X-ray free-electron laser trigger rapid and complete Coulomb explosions of 2-iodopyridine and 2-iodopyrazine molecules. We obtain intriguingly clear momentum images depicting ten or eleven atoms, including all the hydrogens, and thus overcome a so-far impregnable barrier for complete Coulomb explosion imaging—its limitation on molecules consisting of three to five atoms. In combination with state-of-the-art multi-coincidence techniques and elaborate theoretical modelling, this allows tracing ultrafast hydrogen emission and obtaining information on the result of intramolecular electron rearrangement. Our work represents an important step towards imaging femtosecond chemistry via Coulomb explosion

    Inner-shell-ionization-induced femtosecond structural dynamics of water molecules imaged at an x-ray free-electron laser

    Get PDF
    The ultrafast structural dynamics of water following inner-shell ionization is a crucial issue in high-energy radiation chemistry. We have exposed isolated water molecules to a short x-ray pulse from a free-electron laser and detected momenta of all produced ions in coincidence. By combining experimental results and theoretical modeling, we can image dissociation dynamics of individual molecules in unprecedented detail. We reveal significant molecular structural dynamics in H2O2+, such as asymmetric deformation and bond-angle opening, leading to two-body or three-body fragmentation on a timescale of a few femtoseconds. We thus reconstruct several snapshots of structural dynamics at different time intervals, which highlight dynamical patterns that are relevant as initiating steps of subsequent radiation-damage processes.</p
    • 

    corecore