259 research outputs found

    Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds in the Valley of Mexico during the MCMA 2002 and 2003 field campaigns

    No full text
    International audienceA wide array of volatile organic compound (VOC) measurements was conducted in the Valley of Mexico during the MCMA-2002 and 2003 field campaigns. Study sites included locations in the urban core, in a heavily industrial area and at boundary sites in rural landscapes. In addition, a novel mobile-laboratory-based conditional sampling method was used to collect samples dominated by fresh on-road vehicle exhaust to identify those VOCs whose ambient concentrations were primarily due to vehicle emissions. Five distinct analytical techniques were used: whole air canister samples with Gas Chromatography/Flame Ionization Detection (GC-FID), on-line chemical ionization using a Proton Transfer Reaction Mass Spectrometer (PTR-MS), continuous real-time detection of olefins using a Fast Olefin Sensor (FOS), and long path measurements using UV Differential Optical Absorption Spectrometers (DOAS). The simultaneous use of these techniques provided a wide range of individual VOC measurements with different spatial and temporal scales. The VOC data were analyzed to understand concentration and spatial distributions, diurnal patterns, origin and reactivity in the atmosphere of Mexico City. The VOC burden (in ppbC) was dominated by alkanes (60%), followed by aromatics (15%) and olefins (5%). The remaining 20% was a mix of alkynes, halogenated hydrocarbons, oxygenated species (esters, ethers, etc.) and other unidentified VOCs. However, in terms of ozone production, olefins were the most relevant hydrocarbons. Elevated levels of toxic hydrocarbons, such as 1,3-butadiene, benzene, toluene and xylenes were also observed. Results from these various analytical techniques showed that vehicle exhaust is the main source of VOCs in Mexico City and that diurnal patterns depend on vehicular traffic. Finally, examination of the VOC data in terms of lumped modeling VOC classes and its comparison to the VOC lumped emissions reported in other photochemical air quality modeling studies suggests that some, but not all, VOC classes are underestimated in the emissions inventory by factors of 1.1 to 3

    Ligand-Receptor Interactions

    Full text link
    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the interest of biologists to the kinetic and mechanical properties of cell membrane receptors. The aim of this review is to give a description of these advances that benefitted from a largely multidisciplinar approach

    Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds in the Valley of Mexico during the MCMA 2002 & 2003 field campaigns

    Get PDF
    A wide array of volatile organic compound (VOC) measurements was conducted in the Valley of Mexico during the MCMA-2002 and 2003 field campaigns. Study sites included locations in the urban core, in a heavily industrial area and at boundary sites in rural landscapes. In addition, a novel mobile-laboratory-based conditional sampling method was used to collect samples dominated by fresh on-road vehicle exhaust to identify those VOCs whose ambient concentrations were primarily due to vehicle emissions. Four distinct analytical techniques were used: whole air canister samples with Gas Chromatography/Flame Ionization Detection (GC-FID), on-line chemical ionization using a Proton Transfer Reaction Mass Spectrometer (PTR-MS), continuous real-time detection of olefins using a Fast Olefin Sensor (FOS), and long path measurements using UV Differential Optical Absorption Spectrometers (DOAS). The simultaneous use of these techniques provided a wide range of individual VOC measurements with different spatial and temporal scales. The VOC data were analyzed to understand concentration and spatial distributions, diurnal patterns, origin and reactivity in the atmosphere of Mexico City. The VOC burden (in ppbC) was dominated by alkanes (60%), followed by aromatics (15%) and olefins (5%). The remaining 20% was a mix of alkynes, halogenated hydrocarbons, oxygenated species (esters, ethers, etc.) and other unidentified VOCs. However, in terms of ozone production, olefins were the most relevant hydrocarbons. Elevated levels of toxic hydrocarbons, such as 1,3-butadiene, benzene, toluene and xylenes, were also observed. Results from these various analytical techniques showed that vehicle exhaust is the main source of VOCs in Mexico City and that diurnal patterns depend on vehicular traffic in addition to meteorological processes. Finally, examination of the VOC data in terms of lumped modeling VOC classes and its comparison to the VOC lumped emissions reported in other photochemical air quality modeling studies suggests that some alkanes are underestimated in the emissions inventory, while some olefins and aromatics are overestimated

    Biological activity differences between TGF-β1 and TGF-β3 correlate with differences in the rigidity and arrangement of their component monomers

    Get PDF
    [Image: see text] TGF-β1, -β2, and -β3 are small, secreted signaling proteins. They share 71–80% sequence identity and signal through the same receptors, yet the isoform-specific null mice have distinctive phenotypes and are inviable. The replacement of the coding sequence of TGF-β1 with TGF-β3 and TGF-β3 with TGF-β1 led to only partial rescue of the mutant phenotypes, suggesting that intrinsic differences between them contribute to the requirement of each in vivo. Here, we investigated whether the previously reported differences in the flexibility of the interfacial helix and arrangement of monomers was responsible for the differences in activity by generating two chimeric proteins in which residues 54–75 in the homodimer interface were swapped. Structural analysis of these using NMR and functional analysis using a dermal fibroblast migration assay showed that swapping the interfacial region swapped both the conformational preferences and activity. Conformational and activity differences were also observed between TGF-β3 and a variant with four helix-stabilizing residues from TGF-β1, suggesting that the observed changes were due to increased helical stability and the altered conformation, as proposed. Surface plasmon resonance analysis showed that TGF-β1, TGF-β3, and variants bound the type II signaling receptor, TβRII, nearly identically, but had small differences in the dissociation rate constant for recruitment of the type I signaling receptor, TβRI. However, the latter did not correlate with conformational preference or activity. Hence, the difference in activity arises from differences in their conformations, not their manner of receptor binding, suggesting that a matrix protein that differentially binds them might determine their distinct activities

    Validation of OMPS Suomi NPP and OMPS NOAA‐20 Formaldehyde Total Columns With NDACC FTIR Observations

    Get PDF
    We validate formaldehyde (HCHO) vertical column densities (VCDs) from Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) instruments onboard the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite for 2012–2020 and National Oceanic and Atmospheric Administration-20 (NOAA-20) satellite for 2018–2020, hereafter referred to as OMPS-NPP and OMPS-N20, with ground-based Fourier-Transform Infrared (FTIR) observations of the Network for the Detection of Atmospheric Composition Change (NDACC). OMPS-NPP/N20 HCHO products reproduce seasonal variability at 24 FTIR sites. Monthly variability of OMPS-NPP/N20 has a very good agreement with FTIR, showing correlation coefficients of 0.83 and 0.88, respectively. OMPS-NPP (N20) biases averaged over all sites are −0.9 (4) ± 3 (6)%. However, at clean sites (with VCDs 4.0 × 1015^{15} molecules cm2^{−2}, negative biases of −15% ± 4% appear for OMPS-NPP, but OMPS-N20 shows smaller bias of 0.5% ± 6% due to its smaller ground pixel footprints. Therefore, smaller satellite footprint sizes are important in distinguishing small-scale plumes. In addition, we discuss a bias correction and provide lower limit for the monthly uncertainty of OMPS-NPP/N20 HCHO products. The total uncertainty for OMPS-NPP (N20) at clean sites is 0.7 (0.8) × 1015^{15} molecules cm2^{−2}, corresponding to a relative uncertainty of 32 (30)%. In the case of HCHO VCDs > 4.0 × 1015^{15} molecules cm2^{−2}, however, the relative uncertainty in HCHO VCDs for OMPS-NPP (N20) decreases to 31 (18)%

    Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations

    Get PDF
    The Sentinel-5 Precursor (S5P) mission with the TROPOspheric Monitoring Instrument (TROPOMI) on board has been measuring solar radiation backscattered by the Earth\u27s atmosphere and surface since its launch on 13 October 2017. In this paper, we present for the first time the S5P operational methane (CH4) and carbon monoxide (CO) products\u27 validation results covering a period of about 3 years using global Total Carbon Column Observing Network (TCCON) and Infrared Working Group of the Network for the Detection of Atmospheric Composition Change (NDACC-IRWG) network data, accounting for a priori alignment and smoothing uncertainties in the validation, and testing the sensitivity of validation results towards the application of advanced co-location criteria. We found that the S5P standard and bias-corrected CH4 data over land surface for the recommended quality filtering fulfil the mission requirements. The systematic difference of the bias-corrected total column-averaged dry air mole fraction of methane (XCH4) data with respect to TCCON data is -0.26 +/- 0.56 % in comparison to -0.68 +/- 0.74 % for the standard XCH4 data, with a correlation of 0.6 for most stations. The bias shows a seasonal dependence. We found that the S5P CO data over all surfaces for the recommended quality filtering generally fulfil the missions requirements, with a few exceptions, which are mostly due to co-location mismatches and limited availability of data. The systematic difference between the S5P total column-averaged dry air mole fraction of carbon monoxide (XCO) and the TCCON data is on average 9.22 +/- 3.45 % (standard TCCON XCO) and 2.45 +/- 3.38 % (unscaled TCCON XCO). We found that the systematic difference between the S5P CO column and NDACC CO column (excluding two outlier stations) is on average 6.5 +/- 3.54 %. We found a correlation of above 0.9 for most TCCON and NDACC stations. The study shows the high quality of S5P CH4 and CO data by validating the products against reference global TCCON and NDACC stations covering a wide range of latitudinal bands, atmospheric conditions and surface conditions

    Mapping carbon monoxide pollution from space down to city scales with daily global coverage

    Get PDF
    On 13 October 2017, the European Space Agency (ESA) successfully launched the Sentinel-5 Precursor satellite with the Tropospheric Monitoring Instrument (TROPOMI) as its single payload. TROPOMI is the first of ESA's atmospheric composition Sentinel missions, which will provide complete long-term records of atmospheric trace gases for the coming 30 years as a contribution to the European Union's Earth Observing program Copernicus. One of TROPOMI's primary products is atmospheric carbon monoxide (CO). It is observed with daily global coverage and a high spatial resolution of 7×7&thinsp;km2. The moderate atmospheric resistance time and the low background concentration leads to localized pollution hotspots of CO and allows the tracking of the atmospheric transport of pollution on regional to global scales. In this contribution, we demonstrate the groundbreaking performance of the TROPOMI CO product, sensing CO enhancements above cities and industrial areas and tracking, with daily coverage, the atmospheric transport of pollution from biomass burning regions. The CO data product is validated with two months of Fourier-transform spectroscopy (FTS) measurements at nine ground-based stations operated by the Total Carbon Column Observing Network (TCCON). We found a good agreement between both datasets with a mean bias of 6&thinsp;ppb (average of individual station biases) for both clear-sky and cloudy TROPOMI CO retrievals. Together with the corresponding standard deviation of the individual station biases of 3.8&thinsp;ppb for clear-sky and 4.0&thinsp;ppb for cloudy sky, it indicates that the CO data product is already well within the mission requirement.</p
    corecore