114 research outputs found

    Adsorption Capabilities of Fungoid Chitosan Toward Organic Acids in Model Solutions and White Wine

    Get PDF
    In oenology, fungoid chitosan (CH) can be used as an adjuvant for microbial control, haziness prevention, metal chelation, and ochratoxin removal. In acidic media (such as wine), CH can ionise and interact with charged compounds, giving rise to a series of adsorption and/or removal phenomena, some of which potentially impairing the overall quality of wines. In this context, it is worth noting that the interaction between CH and acidic components of wines has been poorly studied so far, and detailed information on this subject is still lacking. To study those interactions, different doses of chitosan (0.5; 1.0; 2.0 g/L) were dispersed in hydro-alcoholic solution (HS), synthetic wine solution (SW), and white wine (W). Results demonstrated that the remotion of tartaric acid and the change of pH were strongly affected by the matrix and dosage. In W and SW, chitosan was found to adsorb tartaric acid up to about 200 mg/g and 350 mg/g CH, respectively. Accordingly, pH values increased; however, the magnitude depended on the matrix as a consequence of different buffer capacities. Interestingly, even in the absence of tartaric acid (e.g. in HS samples) CH addition caused a pH increase (up to 1.2 units for 2 g/L CH addition) which demonstrated that pH variations may not only depend on the amount of organic acids adsorbed. The chitosan dispersed in W showed the highest average diameter D [3,2] (127.96 μm) compared to the ones dispersed in SW (120.81 μm) and in HS (116.26 μm), probably due to the presence of organic acids on the polymer surface. The minor removal of tartaric acid in W compared to SW could probably depend on the competitive adsorption onto chitosan of other families of compounds present in wine such as polyphenols. The data suggested that chitosan addition could affect the pH and organic acid concentration of all matrices, depending on the doses and composition of the solutions

    BAFF regulates B cell survival by downregulating the BH3-only family member Bim via the ERK pathway

    Get PDF
    The B cell activating factor belonging to the tumor necrosis factor family (BAFF) is required for B cell survival and maturation. The mechanisms by which BAFF mediates B cell survival are less understood. We found that BAFF and a proliferation-inducing ligand (APRIL), which are related, block B cell antigen receptor (BCR)–induced apoptosis upstream of mitochondrial damage, which is consistent with a role for Bcl-2 family proteins. BCR ligation strongly increased expression of the proapoptotic Bcl-2 homology 3–only Bcl-2 protein Bim in both WEHI-231 and splenic B cells, and increases in Bim were reversed by BAFF or APRIL. Small interfering RNA vector–mediated suppression of Bim blocked BCR-induced apoptosis. BAFF also induced Bim phosphorylation and inhibited BCR-induced association of Bim with Bcl-2. BAFF induced delayed but sustained stimulation of extracellular signal–regulated kinase (ERK) and its activators, mitogen-activated protein kinase/ERK activating kinase (MEK) and c-Raf, and MEK inhibitors promoted accumulation and dephosphorylation of Bim. These results suggest that BAFF inhibits BCR-induced death by down-regulating Bim via sustained ERK activation, demonstrating that BAFF directly regulates Bim function. Although transitional immature type 1 (T1) B cell numbers are normal in Bim−/− mice, T2 and follicular mature B cells are elevated and marginal zone B cells are reduced. Our results suggest that mature B cell homeostasis is maintained by BAFF-mediated regulation of Bim

    Impact of Enzymatic Hydrolysis and Heat Inactivation on the Physicochemical Properties of Milk Protein Hydrolysates

    Get PDF
    This study determined the physicochemical properties (apparent viscosity (ηapp ), turbidity (A550nm ), particle size and molecular mass distribution) of hydrolysates generated from whey protein concentrate (WPC), milk protein concentrate (MPC) and sodium caseinate (NaCN), following incubation with Debitrase HYW20™ and Prolyve™ at 50◦ C, pH 7.0 for 1 and 4 h, before and after heat inactivation (80◦ C for 10 min). The degree of hydrolysis (DH) increased with incubation time, giving values of 6.56%, 8.17% and 9.48%, following 1 h hydrolysis of WPC, MPC and NaCN with Debitrase HYW20™, and 12.04%, 15.74% and 17.78%, respectively, following 4 h incubation. These DHs were significantly higher compared to those obtained following 4 h incubation with Prolyve™. Hydrolysis with Debitrase HYW20™ gave >40% of peptides with molecular masses < 1 kDa for all substrates, which was higher than the value obtained following hydrolysis with Prolyve™. The effect of hydrolysis on the physicochemical properties was substrate dependent, since ηapp decreased in WPC and NaCN hydrolysates, particle size decreased for all the substrates, with aggregate formation for MPC, and turbidity decreased in WPC and MPC hydrolysates, while it increased in NaCN hydrolysates. The physical properties of the hydrolysates were influenced by the enzyme thermal inactivation step in a DH-dependent manner, with no significant effect on turbidity and viscosity for hydrolysates at higher DHs

    Freeze-dried products based on walnuts: Interaction between fat fraction and dietary fiber

    Get PDF
    Walnuts are appreciated all around the world by consumers and food industries because of their different and positive properties including flavouring, texturizing and nutritional qualities. Walnut paste production and use are commonly associated to confectionery or traditional products but may find space in different innovative foods, as fat replacer and functional component. The aim of this work was to increase the nutritional value of walnut paste and, at the same time, limit its oxidative degradation by developing a freeze-drying process with addition of polysaccharide matrices including dietary fiber. The effects of different formulations and technological treatments on product stability were evaluated. Shelled walnuts were roasted at 165 °C for 15 minutes, grinded, and refined; the obtained walnut paste was mixed with betaglucan, inulin and pectin, singly or combined with tragacanth gum and DE12 maltodextrin. The different formulations were added to water, emulsified and dehydrated by freeze-drying. Lyophilized samples were finally stored at 60 °C for 15 days. Walnut paste, samples just after lyophilization, and lyophilized samples after storage were evaluated in terms of moisture, peroxide number, acidity and pH, conjugated dienes and trienes, total phenols and tocopherols. Further analyses (color, 410 and 420 nm absorption, and total phenols content after ethanol precipitation) were carried out on freeze dried samples before and after storage. The results showed that the freeze-drying process affected the nutritional profile of the walnuts, limiting the onset of oxidative phenomena. After storage the content of total phenols and tocopherols was significantly higher already in the freshly lyophilized walnut paste, compared to the untreated one. The addition of polysaccharide compounds aided to preserve total phenols. However, when betaglucan, inulin, or pectin were individually included, a significant depletion of tocopherols was observed. Maltodextrin and tragacanth gum played a fundamental role in maintaining high levels of both total phenols and tocopherols. Nevertheless, formulations including also dietary fiber were slightly more oxidized. Among them, the inclusion of betaglucan provided the overall best results

    How additive manufacturing can boost the bioactivity of baked functional foods

    Get PDF
    The antioxidant activity of baked foods is of utmost interest when envisioning enhancing their health benefits. Incorporating functional ingredients is challenging since their bioactivity naturally declines during baking. In this study, 3D food printing and design of experiments are employed to clarify how the antioxidant activity of cookies enriched with encapsulated polyphenols can be maximized. A synergistic effect between encapsulation, time, temperature, number of layers, and infill of the printed cookies was observed on the moisture and antioxidant activity. Four-layer cookies with 30% infill provided the highest bioactivity and phenolic content if baked for 10 min and at 180 °C. The bioacitivity and total phenolic content improved by 115% and 173%, respectively, comparing to free extract cookies.Moreover, the proper combination of the design and baking variables allowed to vary the bioactivity of cooked cookies (moisture 35%) between 300 and 700 ?molTR/gdry. The additive manufacture of foods with interconnected pores could accelerate baking and browning, or reduce thermal degradation. This represents a potential approach to enhance the functional and healthy properties of cookies or other thermal treated bioactive food products.The research leading to these results has received funding from FODIAC – Food for Diabetes and Cognition, funded by European Union, under the call Marie Skłodowsk-Curie Research and Innovation Staff Exchange (Ref. H2020-MSCA-RISE-778388); PhD grantship from Fondazione di Piacenza e Vigevano (Doctoral School on the Agro-Food System, Università Cattolica del Sacro Cuore); Fondazione Cariplo through the project ReMarcForFood – Biotechnological strategies for the conversion of Winemaking by-products and their recycling into the food chain: development of new concepts of use, 2016-0740 grant.info:eu-repo/semantics/publishedVersio

    Extrafollicular plasmablast present in the acute phase of infections express high levels of PD-L1 and are able to limit T cell respose

    Get PDF
    During infections with protozoan parasites or some viruses, T cell immunosuppression is generated simultaneously with a high B cell activation. It has been described that, as well as producing antibodies, plasmablasts, the differentiation product of activated B cells, can condition the development of protective immunity in infections. Here, we show that, in T. cruzi infection, all the plasmablasts detected during the acute phase of the infection had higher surface expression of PD-L1 than other mononuclear cells. PD-L1hi plasmablasts were induced in vivo in a BCR-specific manner and required help from Bcl-6+CD4+T cells. PD-L1hi expression was not a characteristic of all antibody-secreting cells since plasma cells found during the chronic phase of infection expressed PD-L1 but at lower levels. PD-L1hi plasmablasts were also present in mice infected with Plasmodium or with lymphocytic choriomeningitis virus, but not in mice with autoimmune disorders or immunized with T cell-dependent antigens. In vitro experiments showed that PD-L1hi plasmablasts suppressed the T cell response, partially via PD-L1. Thus, this study reveals that extrafollicular PD-L1hi plasmablasts, whose peaks of response precede the peak of germinal center response, may have a modulatory function in infections, thus influencing T cell response.Fil: Gorosito Serran, Melisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Fiocca Vernengo, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Almada, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Beccaria, Cristian Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Gazzoni, Yamila Natali. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Canete, Pablo F.. Australian National University; ArubaFil: Roco, Jonathan A.. Australian National University; ArubaFil: Tosello Boari, Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Ramello, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Wehrens, Ellen. University of California; Estados UnidosFil: Cai, Yeping. Australian National University; ArubaFil: Zuniga, Elina Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Montes, Carolina Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Cockburn, Ian A.. Australian National University; ArubaFil: Acosta Rodriguez, Eva Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Vinuesa, Carola G.. Australian National University; ArubaFil: Gruppi, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentin

    Using the plants of Brazilian Cerrado for wound healing : from traditional use to scientific approach

    Get PDF
    Ethnopharmacological relevance The Brazilian Cerrado is a biome with a remarkable diversity of plant species, many of which are used mainly by local communities as a source of treatment to several pathologic processes, especially for the treatment of wounds. However, no systematic review exists focusing on the plants used in this respect and on the appropriate pharmacological investigations that substantiate the actions that are reported. This study revisits the traditional use of medicinal plants from the Brazilian Cerrado in the treatment of wounds and the pharmacological characteristics of the reported plant species. Methodology For the present article, previous studies on plants of the Brazilian Cerrado used for wound healing carried out between 1996 and 2018 were researched on various academic databases (PubMed, Elsevier, Springer, Lilacs, Google Escolar, and Scielo). Results A total of 33 studies were carried out on 29 plant species distributed into 18 families, mainly Fabaceae or Leguminosae (9), Bignoniaceae (2), Asteraceae (2), Euphorbiaceae (2). Considering the great diversity of Cerrado plants, only a small number of wound healing studies were carried out between 1996 and 2018. It was observed that there is a large gap between experimentation assay and traditional use. There are only few connections between the form of use by the population and the experiments conducted in the laboratory. We found that only about 12% of these studies considered to use the methodologies, or at least in parts, to obtain extracts such as those used in folk medicine. Approximately 37% of the experiments were performed using the bark as well as the same ratio for leaves, 6% using the fruits, and 9% using the seeds, roots or flowers. In several studies, there are reports of chemical constituents such as flavonoids and tannins, followed by steroid terpenes, saponins, and fatty acids, and alkaloids. However, approximately 35% of the studies did not supply information about compounds present in the preparation or the effect which could be attributed to these agents in respect to wound healing. Regarding treatment, most of the studies employed a topical treatment, though intraperitoneal and oral treatment were also described using either topical, oil-based formulations, but also gel- or saline-based formulations. Conclusions Although, there has been an increase in knowledge about the biological actions of plants from Cerrado biome, the scientific basis for the traditional use of these local medicinal plants in wound healing does not provide sufficient information on the efficacy of the treatment, the molecular mechanisms, or, in particular, the effective doses used and the drug interactions. Thus, focused research investigating these hypotheses from traditional knowledge is necessary to prove the evidence of the potential pharmacological action

    Unconventional pro-inflammatory CD4+ T cell response in B cell-deficient mice infected with Trypanosoma cruzi

    Get PDF
    Chagas disease, caused by the parasite Trypanosoma cruzi, is endemic in Latin America but has become a global public health concern by migration of infected people. It has been reported that parasite persistence as well as the intensity of the inflammatory immune response are determinants of the clinical manifestations of the disease. Even though inflammation is indispensable for host defense, when deregulated, it can contribute to tissue injury and organ dysfunction. Here, we report the importance of B cells in conditioning T cell response in T. cruzi infection. Mice deficient in mature B cells (muMT mice) infected with T. cruzi exhibited an increase in plasma TNF concentration, TNF-producing CD4+ T cells, and mortality. The increase in TNF-producing CD4+ T cells was accompanied by a reduction in IFNγ+CD4+ T cells and a decrease of the frequency of regulatory Foxp3+, IL-10+, and IL17+CD4+ T cells populations. The CD4+ T cell population activated by T. cruzi infection, in absence of mature B cells, had a high frequency of Ly6C+ cells and showed a lower expression of inhibitory molecules such as CTLA-4, PD-1, and LAG3. CD4+ T cells from infected muMT mice presented a high frequency of CD62LhiCD44− cells, which is commonly associated with a naïve phenotype. Through transfer experiments we demonstrated that CD4+ T cells from infected muMT mice were able to condition the CD4+ T cells response from infected wild-type mice. Interestingly, using Blimp-flox/flox-CD23icre mice we observed that in absence of plasmablast/plasma cell T. cruzi-infected mice exhibited a higher number of TNF-producing CD4+ T cells. Our results showed that the absence of B cells during T. cruzi infection affected the T cell response at different levels and generated a favorable scenario for unconventional activation of CD4+ T cell leading to an uncontrolled effector response and inflammation. The product of B cell differentiation, the plasmablast/plasma cells, could be able to regulate TNF-producing CD4+ T cells since their absence favor the increase of the number of TNF+ CD4+ in T. cruzi-infected miceResearch reported in this publication was supported by the Agencia Nacional de Promoción Científica y Técnica (Foncyt, PICT 2011-2647 and PICT 2015-0645), Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, (PIP 112- 20110100378), the Secretaría de Ciencia y Técnica-Universidad Nacional de Córdoba, and the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number R01AI116432-01

    Dietary Supplementation with Probiotics Improves Hematopoiesis in Malnourished Mice

    Get PDF
    BACKGROUND: Lactobacillus rhamnosus CRL1505 (Lr) administered during the repletion of immunocompromised-malnourished mice improves the resistance against intestinal and respiratory infections. This effect is associated with an increase in the number and functionality of immune cells, indicating that Lr could have some influence on myeloid and lymphoid cell production and maturation. OBJECTIVE: This study analyzed the extent of the damage caused by malnutrition on myeloid and lymphoid cell development in the spleen and bone marrow (BM). We also evaluated the impact of immunobiotics on the recovery of hematopoiesis affected in malnourished mice. METHODS: Protein malnourished mice were fed on a balanced conventional diet for 7 or 14 consecutive d with or without supplemental Lr or fermented goat's milk (FGM). Malnourished mice and well-nourished mice were used as controls. Histological and flow cytometry studies were carried out in BM and spleen to study myeloid and lymphoid cells. RESULTS: Malnutrition induced quantitative alterations in spleen B and T cells; however, no alteration was observed in the ability of splenic B cells to produce immunoglobulins after challenge with LPS or CpG. The analysis of BM B cell subsets based on B220, CD24, IgM and IgD expression showed that malnutrition affected B cell development. In addition, BM myeloid cells decreased in malnourished mice. On the contrary, protein deprivation increased BM T cell number. These alterations were reverted with Lr or FGM repletion treatments since normal numbers of BM myeloid, T and B cells were observed in these groups. CONCLUSIONS: Protein malnutrition significantly alters B cell development in BM. The treatment of malnourished mice with L. rhamnosus CRL1505 was able to induce a recovery of B cells that would explain its ability to increase immunity against infections. This work highlights the possibility of using immunobiotics to accelerate the recovery of lymphopoyesis in immunocompromised-malnourished hosts
    corecore