66 research outputs found

    Maurocalcine and domain A of the II-III loop of the dihydropyridine receptor Cav 1.1 subunit share common binding sites on the skeletal ryanodine receptor.

    Get PDF
    International audienceMaurocalcine is a scorpion venom toxin of 33 residues that bears a striking resemblance to the domain A of the dihydropyridine voltage-dependent calcium channel type 1.1 (Cav1.1) subunit. This domain belongs to the II-III loop of Cav1.1, which is implicated in excitation-contraction coupling. Besides the structural homology, maurocalcine also modulates RyR1 channel activity in a manner akin to a synthetic peptide of domain A. Because of these similarities, we hypothesized that maurocalcine and domain A may bind onto an identical region(s) of RyR1. Using a set of RyR1 fragments, we demonstrate that peptide A and maurocalcine bind onto two discrete RyR1 regions: fragments 3 and 7 encompassing residues 1021-1631 and 3201-3661, respectively. The binding onto fragment 7 is of greater importance and was thus further investigated. We found that the amino acid region 3351-3507 of RyR1 (fragment 7.2) is sufficient for these interactions. Proof that peptide A and maurocalcine bind onto the same site is provided by competition experiments in which binding of fragment 7.2 to peptide A is inhibited by preincubation with maurocalcine. Moreover, when expressed in COS-7 cells, RyR1 carrying a deletion of fragment 7 shows a loss of interaction with both peptide A and maurocalcine. At the functional level, this deletion abolishes the maurocalcine induced stimulation of [3H]ryanodine binding onto microsomes of transfected COS-7 cells without affecting the caffeine and ATP responses

    In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion.

    Get PDF
    International audienceInsulin-secreting pancreatic beta cells are exceptionally rich in zinc. In these cells, zinc is required for zinc-insulin crystallization within secretory vesicles. Secreted zinc has also been proposed to be a paracrine and autocrine modulator of glucagon and insulin secretion in pancreatic alpha and beta cells, respectively. However, little is known about the molecular mechanisms underlying zinc accumulation in insulin-containing vesicles. We previously identified a pancreas-specific zinc transporter, ZnT-8, which colocalized with insulin in cultured beta cells. In this paper we studied its localization in human pancreatic islet cells, and its effect on cellular zinc content and insulin secretion. In human pancreatic islet cells, ZnT-8 was exclusively expressed in insulin-producing beta cells, and colocalized with insulin in these cells. ZnT-8 overexpression stimulated zinc accumulation and increased total intracellular zinc in insulin-secreting INS-1E cells. Furthermore, ZnT-8-overexpressing cells display enhanced glucose-stimulated insulin secretion compared with control cells, only for a high glucose challenge, i.e. >10 mM glucose. Altogether, these data strongly suggest that the zinc transporter ZnT-8 is a key protein for both zinc accumulation and regulation of insulin secretion in pancreatic beta cells

    : Maurocalcine transduction into cells

    Get PDF
    International audienceMaurocalcine (MCa) is a 33-amino-acid residue peptide toxin isolated from the scorpion Scorpio maurus palmatus. External application of MCa to cultured myotubes is known to produce Ca2+ release from intracellular stores. MCa binds directly to the skeletal muscle isoform of the ryanodine receptor, an intracellular channel target of the endoplasmic reticulum, and induces long lasting channel openings in a mode of smaller conductance. Here we investigated the way MCa proceeds to cross biological membranes to reach its target. A biotinylated derivative of MCa was produced (MCa(b)) and complexed with a fluorescent indicator (streptavidine-cyanine 3) to follow the cell penetration of the toxin. The toxin complex efficiently penetrated into various cell types without requiring metabolic energy (low temperature) or implicating an endocytosis mechanism. MCa appeared to share the same features as the so-called cell-penetrating peptides. Our results provide evidence that MCa has the ability to act as a molecular carrier and to cross cell membranes in a rapid manner (1-2 min), making this toxin the first demonstrated example of a scorpion toxin that translocates into cells

    Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella.

    Get PDF
    International audienceTen to fifteen percent of couples are confronted with infertility and a male factor is involved in approximately half the cases. A genetic etiology is likely in most cases yet only few genes have been formally correlated with male infertility. Homozygosity mapping was carried out on a cohort of 20 North African individuals, including 18 index cases, presenting with primary infertility resulting from impaired sperm motility caused by a mosaic of multiple morphological abnormalities of the flagella (MMAF) including absent, short, coiled, bent, and irregular flagella. Five unrelated subjects out of 18 (28%) carried a homozygous variant in DNAH1, which encodes an inner dynein heavy chain and is expressed in testis. RT-PCR, immunostaining, and electronic microscopy were carried out on samples from one of the subjects with a mutation located on a donor splice site. Neither the transcript nor the protein was observed in this individual, confirming the pathogenicity of this variant. A general axonemal disorganization including mislocalization of the microtubule doublets and loss of the inner dynein arms was observed. Although DNAH1 is also expressed in other ciliated cells, infertility was the only symptom of primary ciliary dyskinesia observed in affected subjects, suggesting that DNAH1 function in cilium is not as critical as in sperm flagellum

    FYVE-Dependent Endosomal Targeting of an Arrestin-Related Protein in Amoeba

    Get PDF
    International audienceBACKGROUND: Visual and β-arrestins are scaffolding proteins involved in the regulation of receptor-dependent intracellular signaling and their trafficking. The arrestin superfamilly includes several arrestin domain-containing proteins and the structurally related protein Vps26. In Dictyostelium discoideum, the arrestin-domain containing proteins form a family of six members, namely AdcA to -F. In contrast to canonical arrestins, Dictyostelium Adc proteins show a more complex architecture, as they possess, in addition to the arrestin core, other domains, such as C2, FYVE, LIM, MIT and SAM, which potentially mediate selective interactions with either lipids or proteins. METHODOLOGY AND PRINCIPAL FINDINGS: A detailed analysis of AdcA has been performed. AdcA extends on both sides of the arrestin core, in particular by a FYVE domain which mediates selective interactions with PI(3)P, as disclosed by intrinsic fluorescence measurements and lipid overlay assays. Localization studies showed an enrichment of tagged- and endogenous AdcA on the rim of early macropinosomes and phagosomes. This vesicular distribution relies on a functional FYVE domain. Our data also show that the arrestin core binds the ADP-ribosylation factor ArfA, the unique amoebal Arf member, in its GDP-bound conformation. SIGNIFICANCE: This work describes one of the 6 arrestin domain-containing proteins of Dictyostelium, a novel and atypical member of the arrestin clan. It provides the basis for a better understanding of arrestin-related protein involvement in trafficking processes and for further studies on the expanding roles of arrestins in eukaryotes

    Analyse en flux de chromosomes humains : etude d'un systeme de reference applique aux lymphocytes

    No full text
    SIGLECNRS T 55646 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    : IQGAP1 regulates neural progenitor migration.

    Get PDF
    International audienceIn the germinative zone of the adult rodent brain, neural progenitors migrate into niches delimited by astrocyte processes and differentiate into neuronal precursors. In the present study, we report a modulating role for the scaffolding protein IQGAP1 in neural progenitor migration. We have identified IQGAP1 as a new marker of amplifying neural progenitor and neuronal precursor cells of the subventricular zone (SVZ) and the rostral migratory stream (RMS) in the adult mouse brain. To determine functions for IQGAP1 in neural progenitors, we compared the properties of neural progenitor cells from wild-type and Iqgap1-null mutant mice in vivo and in vitro. The in vivo studies reveal a delay in the transition of de novo neural progenitors into neuronal precursor cells in Iqgap1-null mice. In vitro, we demonstrated that IQGAP1 acts as a downstream effector in the vascular endothelial growth factor (VEGF)-dependent migratory response of neural progenitors that also impacts on their neuronal differentiation. The Rho-family GTPases cdc42/Rac1 and Lis1 are major partners of IQGAP1 in this migratory process. Finally, astrocytes of the neurogenic SVZ and RMS are shown to express VEGF. We propose that VEGF synthesized by astrocytes could be involved in the guidance of neural progenitors to neurogenic niches and that IQGAP1 is an effector of the VEGF-dependent migratory signal

    Identification of NOX2 regions for normal biosynthesis of cytochrome b558 in phagocytes highlighting essential residues for p22phox binding.

    No full text
    International audienceCytochrome b558, the redox core of the NADPH oxidase (NOX) complex in phagocytes, is composed of NOX2 and p22phox, the synthesis of which is intimately connected but not fully understood. We reproduced 10 rare X-minus chronic granulomatous disease (CGD) mutations of highly conserved residues in NOX1-NOX4, in X0-CGD PLB-985 cells in order to analyse their impact on the synthesis of cytochrome b558. According to the impact of these mutations on the level of expression of NADPH oxidase 2 (NOX2) and its activity, mutants were categorized into group A (W18C, E309K, K315del and I325F), characterized by a linear relationship between NOX2 expression and NOX activity, and group B (H338Y, P339H, G389A and F656-F570del), showing an absence of NOX activity associated with variable levels of NOX2 expression. These last residues belong to the FAD-binding pocket of NOX2, suggesting that this functional domain also plays a role in the structural integrity of NOX2. Finally, we observed an abnormal accumulation of p65 (65-kDa monomer), the NOX2 precursor and p65-p22phox dissociation in the W18C, E309K, I325F and G389A mutants, pointing out a possible role of the first transmembrane domain (Trp18), and the region between the membrane and the dehydrogenase domain of NOX2 (Glu309, Ile325 and Gly389), in the binding with p22phox

    Les principes de la cytométrie en flux

    No full text
    International audienc

    Thematic workshop on fluorescence compensation settings in multicolor flow cytometry.

    No full text
    International audienceIn his program of thematic one-day workshops, the French Association of Cytometry had organized a workshop dedicated to the fluorescence compensation settings in multicolor flow cytometry. This special day was in honor of our past President Jean Luc D'Hautcourt who has been involved in the quality of the use of flow cytometry in its clinical and research purposes. Review on fluorescence phenomena, compensation rules, settings, and few observed confounding situations were presented
    • …
    corecore