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Abstract. 

In the germinative zone of the adult rodent brain, neural progenitors migrate into niches delimited by 

astrocyte processes and differentiate into neuronal precursors. In the present study we report a 

modulating role for the scaffolding protein IQGAP1 in neural progenitor migration. We have 

identified IQGAP1 as a new marker of amplifying neural progenitor and neuronal precursor cells of 

the sub ventricular zone (SVZ) and the rostral migratory stream (RMS) in the adult mouse brain. To 

determine functions for IQGAP1 in neural progenitors, we compared the properties of neural 

progenitor cells from wild-type and Iqgap1-null mutant mice in vivo and in vitro. The in vivo studies 

reveal a delay in the transition of de novo neural progenitors into neuronal precursor cells in Iqgap1-

null mice. In vitro, we demonstrated that IQGAP1 acts as a downstream effector in the VEGF-

dependent migratory response of neural progenitors that also impacts on their neuronal differentiation. 

The Rho-family GTPases cdc42/Rac1 and Lis1 are major partners of IQGAP1 in this migratory

process. Finally, astrocytes of the neurogenic SVZ and RMS are shown to express VEGF. We propose 

that VEGF synthesized by astrocytes could be involved in the guidance of neural progenitors to 

neurogenic niches and that IQGAP1 is an effector of the VEGF-dependent migratory signal.
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Introduction.

Neurogenesis persists in the adult mammalian brain in restricted proliferative zones, including the 

anterior subventricular zone (aSVZ) of the lateral wall of the lateral ventricles (Temple and Alvarez-

Buylla, 1999). Three major cell types constitute the neurogenic sub-ependymal layer (Doetsch et al., 

1997; Alvarez-Buylla and Garcia-Verdugo, 2002). These are, GFAP+ cells which are the neural stem 

cells in this brain region (also called type B cells).  Type B cells give rise to multipotent neural 

progenitors, designated type C cells, which lack morphological or immunohistochemical 

characteristics of either glia or neuroblasts.  After several cycles of division, type C cells migrate into 

niches delimited by astrocyte processes to differentiate into neuronal precursors (type A cells) that 

express the cell surface adhesion molecule PSA-NCAM. Type A cell chains coalesce in the proximal 

rostral extension (RE) of the aSVZ forming a restricted path called the rostral migratory stream (RMS) 

and migrate to the olfactory bulb (OB) where they differentiate into interneurons (Lois and Alvarez-

Buylla, 1994). Recent studies have shown that stem cells and neural progenitors are not exclusively 

confined to the SVZ, but are also present in the entire RMS, including the distal portion within the OB

(Gritti et al., 2002). Little is known about the signals that promote proliferation of neural progenitors, 

their directed migration toward glial tunnels and their subsequent differentiation into neuronal

precursors. Vascular endothelial growth factor (VEGF) has been implicated in these different aspects 

of neural progenitors biology (Jin et al., 2002; Jin et al., 2003; Zhang et al., 2003; Cao et al., 2004; 

Schanzer et al., 2004; Hashimoto et al., 2006). VEGF may act indirectly upon endothelial cells or 

astrocytes to influence neuronal cell population (Louissaint et al., 2002; Shen et al., 2004) or directly 

upon neural progenitor cells that express VEGF receptors (Jin et al., 2002; Rosenstein et al., 2003; 

Zhang et al., 2003; Schanzer et al., 2004; Hashimoto et al., 2006). Characterization of VEGF signaling 

in neural progenitors may help to clarify the function of VEGF in adult mammalian neurogenesis.

We here, first identify the IQGAP1 as a new marker of amplifying neural progenitors and neuronal 

precursors in the adult mouse brain. IQGAP1 belongs to the IQGAP family of scaffolding proteins, 

abundant in epithelial and endothelial cells, that binds to a diverse array of signaling and structural 

molecules (For review see (Brown and Sacks, 2006). By interacting with its target proteins, IQGAP1 

participates in multiple cellular functions, including cell-cell adhesion (Lui et al., 2005; Noritake et al., 

2005) and migration (Fukata et al., 2002; Mataraza et al., 2003; Yamaoka-Tojo et al., 2004; 

Kholmanskikh et al., 2006). We next show that in brain, the absence of IQGAP1 delays transition of 

de novo neural progenitors into neuronal precursor cells. In vitro, IQGAP1 is demonstrated to be a 

downstream effector of the VEGF- dependent motility response of neural progenitor cells. We propose 

that IQGAP1 could be an important part of the VEGF signaling pathway involved in the guidance of 

neural progenitors to neurogenic niches for neuronal differentiation.
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Materials and methods

Animals.

Germline Iqgap1-null mutant mice were generated previously by Li et al. (2000) and maintained on 

SV-129 background. Double heterozygous mice were crossed to produce deficient (Iqgap1 -/-) and 

wild type animals. Animals were genotyped by PCR-based assays according to standard protocols 

used by Li et al. (2000).

Antibodies.

The following primary antibodies were used : IQGAP1(H-109) (rabbit polyclonal , Santa Cruz 

Biotechnology, Inc., Tebu-bio, France); Nestin (mouse monoclonal IgG, Developmental Studies 

Hybridoma Bank, Iowa City, IA) ; GFAP (mouse monoclonal IgG, Chemicon International, Inc., 

Euromedex, France ; chicken polyclonal, Abcam, France) ; rabbit polyclonal IgG, DAKO Cytomation, 

S.A, France); VEGF (rabbit polyclonal , Abcam, France); VEGFR-2 (Flk-1) (rabbit polyclonal, Santa 

Cruz Biotechnology, Inc., Tebu-bio, France); BrdU (rat monoclonal, Immunologicals Direct.com.); 

Ki-67 (mouse monoclonal IgG, Abcys, S.A, France); PSA-NCAM (mouse monoclonal IgM, Abcys, 

France); Tuj-1 (or βIII-tubulin) (rabbit polyclonal, Eurogentec, France); O4 (mouse monoclonal IgM, 

home made hybridoma medium); Rac-1 (mouse monoclonal, BD Biosciences, France); Cdc-42 

(mouse monoclonal, BD Biosciences, France). β-catenin (mouse monoclonal, Pharmingen). Secondary 

anti-mouse and anti-rat antibodies conjugated to Cyanin 3 or Cyanin 5 were from Jackson 

immunoresearch Laboratories. Secondary anti-mouse and anti-rat antibodies conjugated to Alexa 

Fluor 488 were from Molecular Probes Inc. Secondary anti Chicken polyclonal -IgY-ab6569 was from 

Abcam. 

Immunohistochemistry.

Three month-old animals were deeply anesthetized and killed by transcardial perfusion of saline 

solution (NaCl 150 mM) followed by 4% para-formaldehyde. After 24h in 4% para-formaldehyde, 

brains were cryopreserved and 14 µm-sagittal and 20 µm-coronal cryostat (Leica CM 3000) sections 

were cut. Cryosections were permeabilized in Tris Buffered Saline (TBS) containing 0.2% Triton X-

100 and blocked in 5% normal goat serum-TBS (NGS-TBS). After incubation with primary antibodies

in NGS-TBS over night at 4°C, sections were washed in TBS and stained with the appropriate 

secondary antibodies. Sections were counterstained with nuclear marker Hoechst 33258 (1µg/ml). 

Images were obtained with a Zeiss (Axiovert 200M) microscope and with Leica (TCS SP2) confocal 

microscope.
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Immunocytochemistry.

Cells were plated onto poly-L-lysine (Sigma)-coated glass coverslips, washed in PBS and fixed with 

4% paraformaldehyde in PBS and permeabilized with 0.2% Triton X-100. After incubation with 

primary antibodies in NGS-TBS over night at 4°C, cells were washed in TBS and stained with the 

appropriate secondary antibodies.

BrdU administration and labeling.

Different protocols of BrdU (Sigma-Aldrich, France) intra-peritoneal injections were performed (100 

mg/kg per body weigh) to label different dividing cell populations: (1) A single injection, 30 min

before euthanasia which preferentially labels rapidly dividing “type C” cells. (2) Three successive 

injections (1 per hour) with the sacrifice of animals 1h after the last injection to label an important 

pool of S-phase cycling cells. For counting experiments, serial sections in the aSVZ were selected. For 

quantitative analysis of the percentage of BrdU+/PSA-NCAM- and BrdU+/PSA-NCAM+ cells, two 

wild type and Iqgap1-null  mice from the same litter were injected with BrdU 3 times (1 per hour) and 

sacrificed 1h after the last injection. From each animal, we selected five to ten serial sections in four

different precise regions extending rostro-caudally from the olfactory bulb to the lateral ventricles.

Presented results are the average of four independent experiments. After fixation and cryosectioning, 

brain slices were permeabilized as describe above, incubated in HCl 2N at room temperature, 

neutralized in sodium borate buffer 0,1M and washed in TBS buffer. Immunohistochemical staining 

was performed as describe above.

Neurosphere culture and differentiation.

Null-mutant and wild-type mice were killed by cervical dislocation. Brains were removed and placed 

in Phosphate Buffered Saline (PBS), the ventricular walls were dissected, transferred in dissociation 

medium containing Trypsin (5000U, Sigma), 0,67mg/ml hyaluronidase (2000U/mg,Sigma) and 

0,2mg/ml kynurenic acid (Sigma) and kept 30min in incubator (37°C,5%CO2). Tissues were washed 

in DMEM medium with 20% Fetal Bovine Serum (FBS) to inactivate the enzyme activity and then 

carefully triturated with a Pasteur Glass pipette. After homogeneization, cells were centrifuged and 

resuspended in basal neurosphere medium (DMEM/F12/B27/BSA 0.1%) complemented with both 

EGF and bFGF mitogens (20ng/ml) (Gritti et al. 2002). To assess cell multipotencies, cells were plated 

onto poly-L-lysine (Sigma)-coated glass coverslips or onto poly-L-lysine-coated permanox plastic 

Lab-Teks. Differentiation experiments were performed between 1 and 15 days in vitro (DIV) in basal 

medium in presence of 3% Fœtal Bovine Serum. To examine VEGF-A (165) (Abcys S.A, France) 

effects onto adult neurospheres, dissociated cells from primary neurospheres were firstly expanded 3 

days in vitro in neurosphere proliferation medium as defined above. After 3 extensive washings with 

basal neurosphere medium, neurospheres were plated on poly-L-lysine-coated glass-bottom dishes and 
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cultivated in basal medium with N2-complement (Invitrogen, France) supplemented with only VEGF-

A (20ng/ml).

Video microscopy.

For time-lapse microscopy, secondary neurospheres derived from adult wild-type and Iqgap1 null 

mice were transferred to poly-L-Lysine-coated glass-bottom dishes covered by a membrane permeable 

to CO2 in the absence or presence of VEGF-A (20 ng/ml), and then placed inside the video 

microscopy platform equipped with a device enabling regulation of temperature and CO2 level. 

Time lapse of Z series images (Z= 13) for multiple positions (n=10) were collected with an inverted 

motorized microscope (Axiovert 200M, Zeiss, Germany) controlled by MetaMorph software 

(Universal Imaging, Downingtown, PA). Cells were observed with an plan neofluar objective 20x0.5 

NA and phase contrast images were acquired with a CoolSnap HQ charge-coupled device camera 

(Roper Scientific, Trenton, NJ) every either 2 min or 5min for 6 hours with an acquisition time of 25 

ms under a low halogen illumination to avoid cell damage. For each Z series images, the best focus 

was chosen before the reconstitution of the movie. To quantify a migration distance the respective 

moving of a cell and the neurosphere centroïd were considered. The relative migration distances were 

expressed in mean +/-SEM.

Immunoprecipitation.

Cells were lysed on ice in lysis buffer (50mM Tris pH 8.0, 150mMNaCl, 0.5% Triton X100, 2mM 

EDTA/EGTA) supplemented with phosphatase inhibitor and protease inhibitor cocktails. Lysates were 

passed through a 26G needle (x15) and centrifuged to remove insoluble material. Supernatant were 

either boiled in 1X DTT laemlli buffer (total cell lysates), or incubated with anti-IQGAP1 antibodies 

together with protein A Sepharose (Pharmacia) for 30 min rotating at 4°C. The immunoprecipitates 

were washed three times in lysis buffer, transferred to a new eppendorf tube and the beads boiled in 

1X laemlli with 20mM DTT. Proteins were separated by SDS-PAGE  using 6% or 10% 

polyacrylamide concentrations. Proteins were blotted onto nitrocellulose membranes.  

Reverse transcription-PCR from adult neurospheres.

Total RNA were extracted with Trizol solution (Invitrogen, France) and cDNA were isolated using the 

SuperScriptTM First Strand kit (Invitrogen, France). 1 µg of RNA was used to synthesize cDNA with 

oligo-(dT) 12-18 primers and 1 µl of SuperScript II reverse transcriptase and was pursued according to 

manufacturer’s instructions. For PCR (95°C > 45s, 57°C > 25s, 72°C > 50s, 40 cycles) experiments, 1 

µl of cDNA was used to amplify specific sequences for Flt-1 (forward, 5’-

CATGCCTCTGGCCACTTG-3’; reverse, 5’-CTCTGATGGTGATCGTGG-3’) and Flk-1 (forward, 

5’-TGGCATCAAGGAAGTGTATCC-3’; reverse, 5’-TATTTCCCAGAGCAACACACC-3’).
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Statistical analyses

Data were statistically analyzed using Student’s t test or ANOVA as appropriate (GraphPad Prism 

4.03, GraphPad Software, Inc). Minimal statistical significance for each test used was defined at 

p<0,05.
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Results.

IQGAP1 is expressed by neural progenitor and precursor cells in the subventricular germinal 

zone and the rostral migratory stream in the adult mouse brain.

Affinity purified antibodies against an N-terminal epitope were used to probe IQGAP protein 

expression in brain extracts derived from wild-type and Iqgap1-null mice (Fig. 1A). The antibodies 

recognize a single protein band with the molecular mass corresponding to IQGAP1 (Mr. 180 kDa). 

The protein band is not detected in extracts derived from Iqgap1-null mice. In wild-type brain, the 

IQGAP1 protein is most abundant in extracts obtained from the sub-ventricular zone (SVZ).

To investigate the cellular expression of IQGAP1 protein in adult mouse brain, we compared the 

immunostaining pattern observed with IQGAP1 antibodies in Iqgap1-null mice and wild-type animals 

(Fig. 1B-C). The IQGAP1 immunoreactivity is completely absent in Iqgap1-null mice, confirming the 

specificity of the antibodies (Fig.1B). In the brain of wild-type animals IQGAP1 antibodies stain the 

endothelial cells, whereas there is no labeling of astrocytes, oligodendrocytes and neuronal cell soma. 

In the sub-ventricular zone (SVZ), strong IQGAP1 immunoreactivity is associated with the plasma 

membrane of the epithelial ependymal cells that form the walls of the brain ventricles and with dense 

clusters of cells that appose the ependymal cell layer in the aSVZ (Fig. 1C). 

To identify the IQGAP1+ cells in the aSVZ, brain slices were triple immunostained for IQGAP1, 

GFAP and the type A cell specific antigen, PSA-NCAM (Fig. 2 A-B). Results show that PSA-

NCAM+ cells ensheathed within  GFAP+ astrocyte processes express IQGAP1 (Fig. 2A). There are 

also individual or small clusters of IQGAP1+/PSA-NCAM- cells isolated from type A cells by 

astrocyte processes (Fig. 2A, arrowhead). The IQGAP1+/PSA-NCAM- cells often appear as mitotic 

cells (Fig. 2B, arrowhead) and are strongly labeled with BrdU after a 30 min. BrdU pulse (Fig. 2C, 

arrowheads). All these characteristics are features of neurogenic progenitors (type C cells) (Doetsch et 

al., 1997; Alvarez-Buylla and Garcia-Verdugo, 2002).

IQGAP1 immunoreactivity persists in the entire RMS (Fig. 3 A-D). In the proximal RE, the IQGAP1+ 

cells are often found ensheathed through glial processes in close association with blood vessels (Fig. 3 

A-B). Within these perivascular niches, the IQGAP1+ cells are immunopositive for PSA-NCAM (Fig. 

3A) and Ki-67 antigen that specify proliferating cells (Fig. 3B). Within the RMS, IQGAP1+/PSA-

NCAM- cells can also be found as clusters lining the chains of PSA-NCAM+ precursors (Fig. 3C, 

arrowhead). These IQGAP1+/PSA-NCAM- cells are labeled with BrdU after 30 min BrdU pulse, and 

may thus correspond to the neural progenitors cells that reside within the RMS (Gritti et al., 2002). In 

the most distal part of the RMS, IQGAP1 immunoreactivity persists into neural progenitor (PSA-

NCAM-) and precursor (PSA-NCAM+) cells (Fig. 3D). In this region, IQGAP1 immunoreactivity 

markedly decreases in PSA-NCAM+ neuroblasts that migrate to the OB (Fig. 3D, panels e-g). 
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Taken together, our immunohistochemistry studies identify IQGAP1 as a new marker of amplifying 

neural progenitors and neuronal precursors in the adult mouse brain.     

Iqgap1-null mice show apparent delay in  differentiation of neural progenitors.

Comparison of wild-type and Iqgap1-null mouse brain revealed no apparent phenotype associated 

with the cellular organization of the SVZ, the rostral extension (RE) of the SVZ, the RMS and the OB. 

Because IQGAP1 is preferentially expressed in proliferating cells, we examined whether IQGAP1 

could  play a role in the control of neural progenitor and precursor cells proliferation. Wild-type and 

Iqgap1-null mice were injected with BrdU and euthanized 30 min after injection. With 30 min pulse 

labeling, neural progenitors are preferentially labeled (Doetsch et al., 1997). Counting the number of 

BrdU-labeled cells in the SVZ revealed no significant difference between wild-type and mutant mice 

(data not shown). The same result was obtained with mice that received three successive BrdU 

injections (1 per hour) with euthanasia of animals 1h after the last injection (data not shown). These 

results suggest that the absence of IQGAP1 do not affect neural progenitor and precursor cell 

proliferation. However, significant differences between wild-type and null-mutant mice were revealed 

by comparing the ratio of de novo amplifying neural progenitors (BrdU+/PSA-NCAM-) and neuronal 

precursor (BrdU+/PSA-NCAM+) cells (Fig. 4 A-B). In these studies, wild-type and Iqgap1-null mice 

from the same litter received three successive BrdU injections (1 per hour) with the euthanasia of 

animals 1h after the last injection. Serial sections extending rostro-caudally from olfactory bulb to 

lateral ventricles were double immunostained with BrdU and PSA-NCAM antibodies. Representative 

immunostaining of sections in the proximal RE (Fig. 4A, panels a and c) and the RMS (Fig. 4A, 

panels b and d) of wild-type and Iqgap1-null mice show that both neural progenitors (PSA-NCAM-) 

and neuronal precursor cells (PSA-NCAM+) incorporated BrdU. BrdU-labeled neural progenitors can 

also be distinguished from BrdU-labeled neuronal precursor cells by their large irregular nuclei

(arrowhead in panel c) and their localization at the periphery of the chains of migrating PSA-NCAM+ 

cells (arrowhead in panel d) (Doetsch et al., 1997). Analysis of the ratio between BrdU+/PSA-NCAM-

and BrdU+/PSA-NCAM+ in wild-type and null-mutant mice revealed that Iqgap1-null mice have 

twice of BrdU+/PSA-NCAM- cells than their wild-type counterparts (Fig. 4 B). These observations 

suggest that the absence of IQGAP1 delays differentiation of neural progenitors. Such apparent delay 

in differentiation might be an intrinsic property of Iqgap1-null neural progenitors or could result from 

altered migration of neural progenitors to neurogenic niches for neuroblast differentiation. 

IQGAP1 regulates VEGF-triggered neural progenitors migration in vitro.

To shed light on specific functions of IQGAP1 in neural progenitor migration/differentiation we 

performed in vitro studies using neural progenitors grown as neurospheres. Neural progenitors have 
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been isolated from adult wild-type and Iqgap1-null mice SVZ and grown as neurospheres as 

previously described (Gritti et al., 2002). We first confirmed the expression of IQGAP1 protein in 

neural progenitors by indirect immunofluorescence and Western blot, and controled the absence of 

IQGAP1 immunoreactivity in neurospheres derived from Iqgap1-null mice (see supplemental Fig.2A-

B). We next compared the proliferation and differentiation properties of wild-type and Iqgap1-null 

cells. Analysis of cell cycle duration on secondary neurospheres revealed no significant differences 

between wild-type and mutant cells (data not shown), confirming the in vivo observation that IQGAP1 

does not markedly affect on neural progenitor cell proliferation.

We also investigated the intrinsic migration and differentiation capacities of neural progenitors upon 

withdrawal of EGF and bFGF in low serum-containing medium (Gritti et al., 2002; Shen et al., 2004). 

When plated onto poly-lysine-coated glass slides, control and mutant neurospheres attached to the 

substratum and progressively formed a monolayer (Supplemental Fig. 1A). There was no difference 

between wild-type and mutant cells. During 15 days we analyzed the kinetics of differentiation as well 

as the percentage of neurons (Tuj-1+), astrocytes (GFAP+) or oligodendrocytes (O4+) produced by 

wild-type and Iqgap1- null cells. Results show that progenitor differentiation capacity and 

specification are not dependent on IQGAP1 (Supplemental Fig. 1B-C). 

Because IQGAP1 has recognized functions in cell motility signal transduction (Fukata et al., 2002; 

Briggs and Sacks, 2003; Mataraza et al., 2003; Kholmanskikh et al., 2006), we next investigated 

whether IQGAP1 could function as a regulator of VEGF-triggered neural progenitor migration (Zhang 

et al., 2003). As previously found with rat SVZ neural progenitors (Zhang et al., 2003), mouse wild-

type and mutant neural progenitors do express VEGF-A receptors (VEGF-R) 1 (Flt1) and 2 (Flk1) 

(Fig. 5A). The VEGF-R2 specifically mediates the chemotactic activities of VEGF in rat neural 

progenitors (Zhang et al., 2003). We used time-lapse video microscopy to compare the behavior of 

wild-type and Iqgap1-deficient neurospheres plated onto polylysine-coated glass slides in medium 

depleted of EGF and bFGF but supplemented with physiological VEGF concentration (20 ng/ml). 

Clear-cut differences between wild-type and Iqgap1-null cells were observed (Fig. 5B, see also 

supplemental videos 1 and 2). Wild-type cells displayed strong positive VEGF-dependent 

chemokinesis as revealed by dynamic spreading from the neurospheres. Quantitative analysis on ten 

individual cell showed an average migration distance of 95 +/- 7 µM after 6 h (Fig. 5C). In contrast, 

Iqgap1-null neurospheres attached to the substratum without apparent dynamic migratory process

during the time of the experiment. The migratory response of wild-type cells to VEGF  was totally

blocked in the presence of 50 µM VEGF-R2 inhibitor SU1498 (Strawn et al., 1996) (data not shown).

These data show that IQGAP1 protein is a key downstream effector in the VEGF-induced 

chemokinetic response of undifferentiated neural progenitor cells. 
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IQGAP1 regulates VEGF-triggered neuronal differentiation in vitro.

To determine the fate of the neurosphere cells migrating in response to VEGF, we performed 

immunocytochemical characterization of the wild-type neurospheres after 2h, 8h and 24h of VEGF 

stimulation. Neurosphere cells were double immunostained with Tuj-1 antibodies that label cells 

committed to neuronal differentiation and either NG2 antibodies that strictly label multipotent 

progenitor cells in vitro (Fig. 6A), or nestin antibodies that label both multipotent progenitors and 

neuronal precursors (Fig. 6B-C). Results showed that cells which migrated out of the neurospheres 

were NG2+ but rapidly lost NG2 immunoreactivity and became Tuj-1+ (Fig. 6A, panels d-f). After 8h, 

NG2 immunoreactivity is residual and most of the cells adopted a  neuronal fate (Fig. 6A, panels g-i). 

Double immunostaining with nestin and Tuj-1 antibodies revealed that migrating cells in the 

outgrowth zone of neurospheres were nestin+ and rapidly acquired mixed nestin+/Tuj-1+ phenotype

(Fig. 6B and 6C). The nestin+/Tuj-1+ cells could represent the neuronal precursor stage. After 24h 

nearly 70% of the cells differentiated into nestin-/Tuj-1+ neuroblasts (Fig. 6B and 6C). In contrast to 

differentiation induced in low serum-containing medium, VEGF stimulation do not induced astrocyte 

(GFAP+) or oligodendrocytes (O4+) differentiation (data not shown). 

We next compared the effects of VEGF-A on the timing of neuronal differentiation of wild-type and 

Iqgap1-null neurosphere cells (Fig. 6 C-D). Quantitative analysis revealed that the timing for neuronal

differentiation is severely delayed in Iqgap1-null neurospheres compared to wild-type cells (Fig. 6 C-

D). Thus, IQGAP1 regulates VEGF-triggered neural progenitor migration that also impacts on 

neuronal differentiation in vitro.

Cdc42/Rac1 Rho GTPase are major partners of IQGAP1 in VEGF-dependent-migratory

signaling pathway.

To investigate the underlying molecular mechanisms involved in the VEGF-dependent migratory

response, we examined the interaction of IQGAP1 with recognized targets involved in cell motility 

and migration, including the Rho-family GTPases Rac1 and Cdc42  (Fukata et al., 2002; Mataraza et 

al., 2003; Kholmanskikh et al., 2006). We first analyzed the effect of VEGF stimulation on Rac1 and 

IQGAP1 sub-cellular localization by confocal microscopy (Fig. 7A). In control neurospheres, Rac1 

immunostaining clearly defined cell-cell contacts, whereas IQGAP1 immunoreactivity gave more 

diffuse punctuate staining. Upon VEGF stimulation, IQGAP1 immunoreactivity re-located to cell-cell 

contacts where it co-localizes with Rac1. Quantification of the overlapping between red and green 

pixels on four different neurospheres showed an average of two fold increase in VEGF-treated 

neurospheres. Co-immunoprecipitation studies confirmed that VEGF stimulation significantly 

enhanced the interaction between IQGAP1 and Rho-family GTPases with a maximun after 10 min 

stimulation (Fig. 7B, lane 2 and lanes 3). The marked enrichment of Cdc42 and Rac1 in IQGAP1 
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immunoprecipitates compared to total lysate levels, clearly identified Cdc42 and Rac1 as major 

partners for IQGAP1 in neural progenitors. 

IQGAP1 in complex with Cdc42 and Rac1 can serve as a template for the recruitment of additional 

proteins. In cerebellar granule cells, Lis1 and CLIP-170 contribute to neuronal motility signal 

transduction by interacting with the IQGAP1/ Cdc42/Rac1 complex (Kholmanskikh et al., 2006). In 

neural progenitors, Lis1 is also found associated with IQGAP1 immunoprecipitates and that 

interaction is further stimulated upon VEGF stimulation (Fig. 7B; Supplemental Fig. 2B). Concerning 

CLIP-170, the very low expression level of this protein in neurosphere cells (Supplemental Figure 

2A), prevented accurate co-Ip analysis (Supplemental Figure 2B).  

Astrocytes of the neurogenic SVZ and the RMS areas express VEGF.

Because VEGF is an attractive guidance cue for the migration of SVZ neural progenitors in vitro

(Zhang et al., 2003), it was essential to identify potential sources of VEGF in the germinative SVZ and 

RMS where neural progenitors reside. Indirect immunofluorescence analysis revealed that, in the adult 

mouse brain, astrocytes of the SVZ and RMS are characterized by high VEGF immunoreactivity (Fig. 

8A), compared to astrocytes of other non-neurogenic brain regions (Fig. 8B). VEGF synthesis by 

astrocytes associated with de novo neurogenesis has already been observed during post-natal 

development of the cerebellum (Acker et al., 2001), in brains subjected to enriched environments and 

performance in the hippocampus (Cao et al., 2004) and after brain injury (Lee et al., 1999). Thus, 

specialized astrocytes of the neurogenic regions are an endogenous sources of VEGF that might 

contribute to directed migration of neural progenitors.
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Discussion.

Adult neurogenesis is a complex phenomenon which requires integration of numerous intrinsic and 

extrinsic cues to generate new neurons throughout life. All these mechanisms are not clearly fully 

understood. We present here, for the first time, a modulating role of the IQGAP1 scaffolding protein 

in the context of adult neurogenesis. In the adult mouse brain, IQGAP1 is expressed by the 

parenchyma endothelial cells, the epithelial ependymal cells of the ventricles and by neural progenitor 

and neuronal precursor cells in the SVZ and the RMS. To shed light on critical functions for IQGAP1 

in neural progenitor cells, we compared properties of wild-type and Iqgap1-null neural progenitors in 

vivo and in vitro. The major in vivo phenotype that characterizes Iqgap1-null mice is an apparent delay 

in the differentiation of neural progenitors into neuronal precursor cells (Fig. 4). To provide 

information on the functional role of IQGAP1 in neural progenitors we used in vitro neurosphere 

cultures. Comparison of the response of wild-type and Iqgap1-null neural progenitors to VEGF 

stimulation revealed a role for IQGAP1 in VEGF-dependent neural progenitor migration (Fig. 5).

VEGF stimulation of wild-type neural progenitors elicited both migratory and neuronal differentiation 

signals (Fig. 6), suggesting that these two phenomenons are coupled. Neuronal differentiation 

accompanying VEGF-mediated migration is delayed in Iqgap1-null cells (Fig. 6 C-D), providing 

evidence that IQGAP1 has an integral role in the both VEGF-induced responses. Considering the 

specific expression of the VEGF receptor Flk1 on uncommitted neural progenitors residing in the SVZ

in vivo (Jin et al., 2002; Zhang et al., 2003), and our finding that neurosphere cells express Flk1 in 

vitro, we would like to suggest a possible link between VEGF signaling pathway and IQGAP1 in 

neural progenitors migration and differentiation in vivo. The immunohistochemical data showing that

VEGF immunoreactivity is confined to the astrocytes of the aSVZ and RMS in mouse brain (Fig. 8),

together with the observation that neuronal precursors (IQGAP1+/PSA-NCAM+) are often found 

forming perivascular niches ensheathed through astrocyte processes (Fig. 3 A-B), suggest that VEGF 

synthesized by astrocytes could participate in the recruitment of neural progenitors to perivascular 

niches for neuronal differentiation. It has already been established that neurogenesis occurs in foci 

closely associated with blood vessels (Palmer et al., 2000), that astrocytes are important for 

neurogenesis (Song et al., 2002), and that  endothelial cells secrete factors that stimulate neural 

progenitor survival and differentiation (Louissaint et al., 2002; Shen et al., 2004). We propose that

IQGAP1 could contribute to VEGF signaling that triggers neural progenitor migration to neurogenic 

niches for neuronal differentiation. In support to this hypothesis, we observed a delay in differentiation 

of neural progenitors into neuronal precursors in Iqgap1-null mice (Fig. 4) which can be explained by 

an altered migration to neurogenic niches.

In vitro, migratory signal triggered in neural progenitor by VEGF correlates with the formation of 

stable complex between IQGAP1 and the Rho family GTPases Cdc42/Rac1 and with Lis1 (Fig. 7), 
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three major partners of IQGAP1 in cell motility signal transduction (Fukata et al., 2002; Mataraza et 

al., 2003; Yamaoka-Tojo et al., 2004; Kholmanskikh et al., 2006). It has been previously demonstrated 

that IQGAP1 is phosphorylated on Tyr and Ser residues in endothelial and epithelial cells by  

membrane-associated kinases such as receptor-associated Tyr kinase and protein kinase C, and this 

could influence IQGAP1 activities (Yamaoka-Tojo et al., 2004; Li et al., 2005). So we have 

investigated whether phosphorylation of IQGAP1 by VEGF-receptor associated kinases could 

contribute to enhance interaction of IQGAP1 with Rho family GTPases in neural progenitors 

(Supplemental Fig. 2C). In neurosphere cells, IQGAP1 did not incorporate phosphate on Ser/Thr nor 

Tyr residues in resting cells or after VEGF stimulation. It is therefore likely that other signaling 

pathways triggered upon VEGF stimulation of neural progenitors are responsible for stimulating 

IQGAP1 interaction with Rho-family GTPase and Lis-1. Calcium signaling is a strong candidate. 

Previous studies reported that calcium influx promotes IQGAP1 delocalization from the cytosol to the 

plasma membrane (Mbele et al., 2002) and that Ca2+ influx regulates the interaction of IQGAP1 with 

Rho-family GTPase and Lis1 (Kholmanskikh et al., 2006). We also have found that VEGF stimulation 

of neural progenitors does promote transient Ca2+ increase in wild-type neurosphere cells 

(Supplemental Fig. 3A). These observations corroborate a recent study showing that VEGF-R2 

stimulation triggers Ca2+ increase in endothelial cells (Dawson et al., 2006). The possible contribution 

of Ca2+ signaling in VEGF-mediated migratory response is further supported by the observation that 

chelation of intracellular calcium by MAPTA-AM inhibited neurosphere cell migration in response to 

VEGF stimulation (Supplemental Fig.3B). Deciphering the role of Ca2+ signaling in IQGAP1-

mediated migration in neural progenitors requires further investigations.

In the mouse RMS, IQGAP1 is also expressed by migrating neuronal precursors (PSA-NCAM+-type 

A cells). The expression of IQGAP1 in neural precursors is consistent with a recent study showing that 

IQGAP1 is expressed by cerebellar immature neurons grown in vitro (Kholmanskikh et al., 2006).

Comparison between wild-type and Iqgap1-null mice revealed no significant differences in the timing 

of migration of neuronal precursors and post-mitotic neuroblast to reach the granular layers of the OB 

(Supplemental Fig. 4). This suggests that mice probably develop compensatory mechanisms. Other 

molecules could compensate for IQGAP1 in neuroblast migration in vivo. A very recent study

identified a novel member of the IQGAP family, IQGAP3, which is highly expressed in adult brain

(Wang et al., 2007). IQGAP3 exhibits a high degree of homology with IQGAP1 in the conserved 

domains, it is also an effector of Rac1/Cdc42 and an actin binding protein (Wang et al., 2007).

Interestingly, IQGAP3 is important for neurite outgrowth downstream of Rac1/Cdc42 in NGF-

stimulated PC12 cells or hippocampal neurons, but IQGAP1 is dispensable (Wang et al., 2007). Thus 

IQGAP1 and IQGAP3 could be involved in common or in different regulatory pathways, but with 

partially redundant functions. It is therefore possible that IQGAP3 compensates for IQGAP1 in 

neuroblast migration along the RMS and within the olfactory bulb, but not in VEGF-induced 

migration in uncommitted neural progenitors. It is noteworthy that in contrast to neural progenitors 
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(PSA-NCAM-), differentiated neuroblasts (PSA-NCAM+) do not express VEGF receptors and do not 

respond to VEGF migration signal (Zhang et al., 2003). Consequently, IQGAP isoforms can be 

differentially mobilized according to migratory signals.

Finally, the proposed function of IQGAP1 in the regulation neural progenitor motility can be extended 

to the amplifying tumorigenic cells in human GBM. In a rat model of GBM and in human GBM, but 

not in oligodendrogliomas, IQGAP1 has been identified as a new molecular marker of niches of 

amplifying tumor cells that share common antigenic characteristics and architectural organization with 

neural progenitors (Balenci et al., 2006). It is likely that the IQGAP1 signaling pathway might also 

play an essential role in the control of the amplifying tumor cell migration in these highly invasive 

tumors.
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 Figure legends.

Figure 1. Characterization of IQGAP1 protein in the mouse brain.

A: Western blot analysis of IQGAP1 protein in mouse brain. Brain extracts derived from the SVZ 

(lanes 1-2) and the brain parenchyma (lanes 3-4) of wild-type (lanes 1 and 3) and null-mutant (lanes 2

and 4) mice were analyzed with anti-IQGAP1 and anti-β catenin antibodies.

B-C: Indirect immunofluorescence analysis of IQGAP1 immunoreactivity in the aSVZ of Iqgap1-null 

(B) and wild-type (C) mice. LV: lateral ventricle, St: striatum. Bar: 50 µm. 

 

Figure 2: Confocal microscope characterization of  IQGAP1+ cells in coronal section of the 

mouse aSVZ.

A: Triple immunostaining of the mouse aSVZ with IQGAP1 (a), PSA-NCAM (b) and GFAP (c) 

antibodies. IQGAP1+/PSA-NCAM+ cells are ensheathed within astrocyte processes forming tunnel-

like structure (panel d). In a and d, the arrowhead points to IQGAP1+/PSA-NCAM- cells localized 

outside the glial tunnel. Bar: 20 µm. 

B: Triple immunostaining of the mouse aSVZ with IQGAP1 (a), PSA-NCAM (b) and GFAP (c) 

antibodies. Slices were counterstained with Hoechst for DNA (d). In the aSVZ, IQGAP1+/PSA-

NCAM- cells often appear as mitotic cells (arrow head in a and d). Panel d shows a reconstituted 

cellular composition of the aSVZ. Yellow: ependymal cells; green: type C cells; red: type A cells; 

blue: astrocyte.  Bar: 4 µm. 

C:  Mouse was injected with BrdU for 30 min and the wall of the lateral ventricles was triple 

immunostained with IQGAP1 (a-d), BrdU (b-d) and GFAP (c-d) antibodies. IQGAP1+ cells (arrow 

head in a, b and d) located outside the glial tunnel facing the striatal parenchyma are co-labeled with 

BrdU. LV: lateral ventricle. Bar: 10µm. 

 

Figure 3: Characterization of the IQGAP1 positive cells in the proximal rostral extension of the 

SVZ and the RMS. 

A: Coronal section focused on the proximal RE triple immunostained with IQGAP1 (a and d), PSA-

NCAM (b and d) and GFAP (c and d) antibodies shows that IQGAP1+/PSA-NCAM+ type A cells 

ensheathed within glial processes accumulate around  blood vessels (BV) (d). Bar: 20 µm. 

B: Triple immunostaining with Hoechst for DNA (a), IQGAP1 antibodies (b and d) and KI-67 

antibody (c and d) show that IQGAP1+ cells are Ki-67+. Bar: 10µm. 

C: Sagittal section in the RMS of a mouse injected with BrdU for 30 min triple immunostained with 

IQGAP1 (a and d), BrdU (b and d) and PSA-NCAM (c and d) antibodies. IQGAP1+ cells lining the 

chains of PSA-NCAM+ neuroblasts  (arrow head) are co-labeled with BrdU (d).  Bar: 20 µm. 
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D: Sagittal section in the most distal part of the RMS stained with Hoechst for DNA (a), and double 

immunostained with IQGAP1 antibodies (b, d, e and g) and PSA-NCAM antibody (c, d ,f and g). 

Panels e,f and g are enlargement of boxed area in b,c and d respectively. Arrowhead points to 

IQGAP1-/PSA-NCAM+ migrating neuroblasts. Bar: 50 µm

Figure 4. Iqgap1- null mice show accumulation of neural progenitors.

A-B: Wild-type and Iqgap1-null  mice from the same litter were injected with BrdU 3 times (1 per 

hour) and sacrificed 1h after the last injection. A: Representative double immunostaining for BrdU

(green) and PSA-NCAM (red) on sagittal sections in the proximal RE (panels a and c; Bar: 20 µm) 

and the RMS (panels b and d; Bar: 50 µm) of wild-type (a-b) and Iqgap1-null (c-d) mice. Arrowheads 

point to BrdU+ cells with neural progenitor features.

B: Quantitative analysis of the percentage of BrdU+/PSA-NCAM- and BrdU+/PSA-NCAM+ cells in 

wild-type and Iqgap1-null mice. Results represent the average of four independent experiments. A 

total of 8001 BrdU+ cells in wild-type animals and 7615 BrdU+ cells in Iqgap1-null  mice were 

analyzed. Significant differences from the corresponding wild-type counterpart were determined by 

student’s t test; *** p< 0,005.

Figure 5.  IQGAP1 regulates VEGF-dependent neural progenitor cell migration.

A: RT-PCR analysis performed on wild-type and Iqgap1-null mutant neurospheres reveal expression 

of both VEGF receptors Flk-1 (VEGF-R2) and Flt-1(VEGF-R1). NP: neural progenitors.

B: Phase contrast reconstitution of time lapse imaging of wild-type and Iqgap1-null mutant derived 

neurospheres in response to VEGF (20 ng/ml) stimulation.

C: Quantification of the average migration distance (n=10) of wild-type (WT) and Iqgap1-null 

neurosphere cells ( KO) after VEGF stimulation.

Figure 6.  VEGF-dependent neural progenitor chemokinesis correlates with neuronal 

differentiation.

A: Wild-type neurospheres were plated on polylysine-coated glass slides in a basal medium containing 

N2 complement and supplemented only with VEGF (20 ng/ml). Cells were immediately fixed (a-c) or 

left 2h (d-f)  and 8h (g-i)  in the presence of VEGF prior to fixation. Cells were stain with Hoechst for 

DNA (a, d, g) and double immunostained with anti-NG2 (b, e, h) and anti-Tuj-1 (c, f, i) antibodies. 

Bar: 20 µM (a-f) and 40 µm (g-i). 

B-D: The effect of VEGF on neuronal differentiation. B; Representative wild-type neurospheres 

stimulated with VEGF for 24h and double immunostained with anti-nestin (a) and anti-Tuj-1 (b) 

antibodies. Bar: 50 µm. C-D: Comparison of kinetic of neuronal phenotype acquisition between wild 

type (C) and Iqgap1 null mutant (D) neurospheres. Wild-type and Iqgap1-null mutant neurospheres 
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were stimulated with VEGF (20 ng/ml) for 8h and 24h, and double immunostained with anti-nestin 

and anti-Tuj-1 antibodies. Three differentiation stages were identified based on nestin and Tuj-1 

immunoreactivities (see text for details). Results are the average of three independent experiments and 

significance was determined by comparison to wild-type counterpart; ** p< 0,01; # p< 0,005. 

Figure 7. Analysis of IQGAP1 partners in wild-type neurospheres stimulated with VEGF.

A: VEGF stimulation enhances co-localization of IQGAP1 with Rac1 at the cell membrane. 

Unstimulated (control) or VEGF-stimulated neurospheres (VEGF) were double immunostained with 

anti-IQGAP1 (green) and anti-Rac1 (red) antibodies. Bar: 10 µm. 

B: Characterization of IQGAP1 immunoprecipitates from neurospheres stimulated with VEGF. Total 

neurosphere extracts (lane 1)  and  IQGAP1 immunoprecipitates from neurospheres not stimulated 

(lane 2) or stimulated with VEGF for 10 min (lanes 3) or 30 min (lanes 4) were analyzed by Western 

blot with polyclonal IQGAP1, and monoclonal Cdc42, Rac1 and Lis1 antibodies as indicated. Lane 5, 

is a control lane corresponding to IQGAP1 immunoprecipitate from iqgap1-null neurospheres.  

Figure 8. Astrocytes of the germinative SVZ and the RMS express VEGF.

A: Immunostaining on sagittal adult mouse brain sections with anti-GFAP (a, d and e; blue) and anti-

VEGF (b and d; green), and anti-PSA-NCAM (c and e; red) antibodies demonstrates a co-localization 

of VEGF with GFAP+ astrocytes in the aSVZ and RMS. LV: lateral ventricle. Bar: 50 µm. 

B: Double immunostaining of adult mouse striatum with anti-VEGF (a and c) and anti-GFAP (b and c) 

antibodies. Slice was counterstained with Hoechst for DNA (c). VEGF immunoreactivity is not 

detected in astrocytes of the striatal parenchyma. Bar: 50 µm.  
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Supplemental Videos. 

 

Video-1: Time lapse imaging of wild-type neurospheres stimulated with VEGF (20 ng/ml). 

Video-2: Time lapse imaging of Iqgap1 null neurospheres stimulated with VEGF (20 ng/ml). 

 

Supplemental figure legends. 

Supplemental Figure 1. In vitro comparison of intrinsic migration and differentiation capacities 

between wild-type and Iqgap1-null neurosphere cells.  

Wild-type and Iqgap1-null neurospheres were plated on poly-L-lysine-coated glass slides in 

neurosphere basal medium supplemented with 3% fetal bovine serum (FBS).  

A: Phase contrast images of time lapse imaging (0-2h) of wild-type and Iqgap1-null mutant 

neurospheres that attached to the substratum. 

B-C: After 2, 4, 7 and 15 days in culture (DIV) cells were triple immunostained with neural cell 

markers GFAP, O4 and Tuj-1 (Gritti et al. 2002; Shen et al. 2004) and analyzed by confocal 

microscopy. (B), representative triple immunostaining of  Iqgap1-null neurosphere after 15 DIV. (C), 

quantitative analysis of the different cell populations in wild-type and Iqgap1-null cultures.  

 

Supplemental Figure 2:  

A-B:CLIP-170 is moderately expressed in mouse neurospheres. A: Comparison of CLIP-170 

expression level in 10 µg of total protein extracts from mouse 3T3 cells (lane 1), wild-type mouse 

neurospheres (lane 2), and Iqgap1-null neurospheres (lane 3). Proteins were resolved on 6%SDS-

PAGE, and analyzed by Western Blot using anti-CLIP-170, anti-IQGAP1 and anti-β-catenin 

antibodies as indicated. 

B: Characterization of IQGAP1 immunoprecipitates from neurospheres stimulated with VEGF. Total 

neurosphere extracts from wild-type (lane 1) and Iqgap1-null neurosphers (lane 6) and  IQGAP1 

immunoprecipitates from wild-type neurospheres not stimulated (lane 2) or stimulated with VEGF for 

10 min (lane 3) or 30 min (lane 4) and from Iqgap1-null neurospheres stimulated with VEGF for 10 

min (lane 5) were analyzed by Western blot with anti-IQGAP1, anti-CLIP-170 and anti-Lis1 

antibodies as indicated.  

C: IQGAP1 is not phosphorylated in VEGF-stimulated neurospheres. Total neurosphere extract (lanes 

1)  and  IQGAP1 immunoprecipitates from wild-type neurospheres not stimulated (lanes 2) or 

stimulated with VEGF for 10 min (lanes 3) or 30 min (lanes 4) were analyzed by Western blot with: 

anti-IQGAP1 (a), anti-Phospho Ser-Thr (b) and anti-Phospho Tyr antibodies (c). The phosphoprotein 
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band in total neurosphere extract (lane 1) in panel c, migrating in close proximity to IQGAP1 most 

likely correspond to auto-phosphorylated EGF receptor. 

 

Supplemental Figure 3. VEGF stimulation promotes transient Ca2+ increase in wild-type 

neurosphere cells. 

A: VEGF-dependent Ca2+- signals were evaluated using the Ca2+-sensitive fluorescent dye Fluo-4. 

Neurospheres were plated onto poly-L-lysine substratum for 45 min and then loaded with 10µΜ Fluo-

4- AM (Molecular Probes) in DMEM/F12 medium (Gibco) at 37°C for 20 min. After two extensive 

washes neurospheres were kept for at least 20 min in DMEM/F12 at 37°C for a complete de-

esterification of the dye. Then, neurospheres were bathed in Tyrode saline solution containing: 136 

mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM HEPES, 10 mM glucose, pH 7,4 (NaOH) 

during the experiment at room temperature. Culture dishes were mounted on the stage of an upright 

Olympus BX51WI microscope equipped with a water immersion 20x objective lens (0.95 NA). The 

excitation light was provided by a 100 W mercury lamp. Fluorescent images were captured by a 

cooled digital CCD MicroMax Princetown camera (782 x 582 pixels). Images were acquired every 5 s 

with the software MetaFluor (v4.5, Universal Imaging). The shutter was controlled by the shutter 

driver Uniblitz VMM-D1 (Vincent Associates). The excitation light for Fluo-4 was filtered through a 

460-495 nm excitation filter and the emitted light was collected through a 510-550 nm filter. After 1 

min neurospheres were stimulated or not with VEGF (20 ng/ml). The figure shows a representative 

Fluo-4 signal recorded before and during the application of VEGF. It produced a long-lasting but 

transient elevation of the cytoplasmic concentration of Ca2+ in all the cells tested (n = 30). On average, 

VEGF (20 ng/ml) increased the Fluo-4 fluorescence by 55 +/- 7.5 % (mean +/- sem). 

B: MAPTA action on wild-type neurospshere response to VEGF stimulation. Neurospheres were pre-

incubated in the basal neurosphere culture medium in the presence of the cell-permeable calcium 

chelator MAPTA-AM  (50µM) for 1h at 37°C. Then, the culture medium was removed and 

neurospheres were washed twice with fresh medium and were stimulated with VEGF (20 ng/ml). 

Phase contrast images at t=0 and t=6h shows that calcium chelation inhibits migratory response of 

wild-type neurospshere cells upon VEGF stimulation. 

 

Supplemental Figure 4. Iqgap1-null mice show no obvious defects in neuroblast migration.  

Two wild-type (A) and Iqgap1-null (B) mice from the same litter received three succesive BrdU 

injections (1 per hour). Animals were sacrificed 1h after the last injection (t: 0), or six days (t: 6d)  or 

12 days (t: 12d) after injection.  Coronal sections (20 µm of thickness) of olfactory bulbs were stained 

with Hoechst for DNA (panels a, c, e) and double immunostained with anti-BrdU (green) and anti-

PSA-NCAM (red) antibodies (panels b, d, f). One hour after the last injection (panels a-b), only few 

BrdU+/PSA-NCAM+ cells were found in the distal RMS. Some BrdU+/PSA-NCAM- cells 

(arrowhead) are juxtaposed to the chains of migrating neuroblasts (PSA-NCAM+) and correspond to 
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neural progenitors (Gritti et al., 2002). After a 6 day-chase (panels c-d), BrdU+ cells within the distal 

RMS drastically increased corresponding to neuronal precursors/neuroblasts migrating to the OB. 

Some BrdU+/PSA-NCAM+ neuroblasts already reached the OB granular layers (arrowhead). 

Comparison between wild-type and Iqgap1-null mice revaled no significant difference in the timing of 

migration of BrdU-labeled neuroblasts to distal RMS. Atfter 12 day-chase (panels e-f), most of the 

BrdU-labeled neuroblasts have migrated to the granular and interneuron layers where they 

differentiated into mature neurons (BrdU+/PSANCAM-). Comparison between wild-type and Iqgap1-

null mice revealed no difference in the timing of migration of BrdU-labeled neuroblasts to the OB 

granular layers. 
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