1,856 research outputs found

    The Student\u27s Perspective: Exploring Ethnic Group Variances in Bullying Behavior Using Mixed Methods Research

    Get PDF
    Although bullying is a widely recognized problem among school-aged youth, current research has failed to adequately consider whether ethnicity impacts students\u27 involvement in, and perceptions of, bullying behaviors. This study employed a mixed methodology to examine how an ethnically diverse sample of students in seventh and eighth grade described and perceived bullying within their school. Initially, the Student Comprehensive Assessment of Bullying Behavior-Revised (SCABB-R) (Varjas, Henrich & Meyers, 2008a) was administered to students attending a suburban middle school in the Midwest (N = 750; 391 males, 359 females). Individual interviews were then conducted to further explore students\u27 perspectives of bullying (N = 16; 7 boys, 9 girls). The results from the surveys and from the interviews revealed some convergence, but differences did appear. Nonetheless, the findings revealed that ethnicity did impact reported bullying behaviors as well as perceived reasons for being bullied

    A Multiyear Investigation of Combating Bullying in Middle School: Stakeholder Perspectives

    Get PDF
    Working collaboratively to address bullying among middle school students is an ongoing challenge. This study used participatory action research to collaborate with key stakeholders within a middle school to identify needs and implement more effective practices. Extensive qualitative and quantitative data are presented, along with process recommendations for bringing different stakeholders together for a sustained change effort

    Prolonged respiratory failure responds to conventional therapy in isolated homocysteine remethylation defects

    Get PDF
    Isolated remethylation defects are rare inherited diseases caused by a defective remethylation of homocysteine to methionine, preventing various essential methylation reactions to occur. Patients present with a systemic phenotype, which can especially affect the central and peripheral nervous systems leading to epileptic encephalopathy, developmental delay and peripheral neuropathy. Respiratory failure has been described in some cases, caused by both central and peripheral neurological involvement. In published cases, the genetic diagnosis and initiation of appropriate therapy were rapidly performed following respiratory failure and led to a rapid recovery of respiratory insufficiency within days. Here, we present two infantile-onset cases of isolated remethylation defects, cobalamine (Cbl)G and methylenetetrahydrofolate reductase (MTHFR) deficiencies, which were diagnosed after several months of respiratory failure. Disease modifying therapy based on hydroxocobalamin and betaine was initiated and shows a progressive improvement and enabled weaning off respiratory support after 21 and 17 months in CblG and MTHFR patients respectively. We show that prolonged respiratory failure responds to conventional therapy in isolated remethylation defects, but can require a sustained period of time before observing a full response to therapy

    Synergistic use of glycomics and single-molecule molecular inversion probes for identification of congenital disorders of glycosylation type-1

    Get PDF
    Congenital disorders of glycosylation type 1 (CDG-I) comprise a group of 27 genetic defects with heterogeneous multisystem phenotype, mostly presenting with nonspecific neurological symptoms. The biochemical hallmark of CDG-I is a partial absence of complete N-glycans on transferrin. However, recent findings of a diagnostic N-tetrasaccharide for ALG1-CDG and increased high-mannose N-glycans for a few other CDG suggested the potential of glycan structural analysis for CDG-I gene discovery. We analyzed the relative abundance of total plasma N-glycans by high resolution quadrupole time-of-flight mass spectrometry in a large cohort of 111 CDG-I patients with known (n = 75) or unsolved (n = 36) genetic cause. We designed single-molecule molecular inversion probes (smMIPs) for sequencing of CDG-I candidate genes on the basis of specific N-glycan signatures. Glycomics profiling in patients with known defects revealed novel features such as the N-tetrasaccharide in ALG2-CDG patients and a novel fucosylated N-pentasaccharide as specific glycomarker for ALG1-CDG. Moreover, group-specific high-mannose N-glycan signatures were found in ALG3-, ALG9-, ALG11-, ALG12-, RFT1-, SRD5A3-, DOLK-, DPM1-, DPM3-, MPDU1-, ALG13-CDG, and hereditary fructose intolerance. Further differential analysis revealed high-mannose profiles, characteristic for ALG12- and ALG9-CDG. Prediction of candidate genes by glycomics profiling in 36 patients with thus far unsolved CDG-I and subsequent smMIPs sequencing led to a yield of solved cases of 78% (28/36). Combined plasma glycomics profiling and targeted smMIPs sequencing of candidate genes is a powerful approach to identify causative mutations in CDG-I patient cohorts

    Natural history of epilepsy in argininosuccinic aciduria provides new insights into pathophysiology: A retrospective international study

    Get PDF
    OBJECTIVE: Argininosuccinate lyase (ASL) is integral to the urea cycle, which enables nitrogen wasting and biosynthesis of arginine, a precursor of nitric oxide. Inherited ASL deficiency causes argininosuccinic aciduria, the second most common urea cycle defect and an inherited model of systemic nitric oxide deficiency. Patients present with developmental delay, epilepsy, and movement disorder. Here we aim to characterize epilepsy, a common and neurodebilitating comorbidity in argininosuccinic aciduria. METHODS: We conducted a retrospective study in seven tertiary metabolic centers in the UK, Italy, and Canada from 2020 to 2022, to assess the phenotype of epilepsy in argininosuccinic aciduria and correlate it with clinical, biochemical, radiological, and electroencephalographic data. RESULTS: Thirty-seven patients, 1-31 years of age, were included. Twenty-two patients (60%) presented with epilepsy. The median age at epilepsy onset was 24 months. Generalized tonic-clonic and focal seizures were most common in early-onset patients, whereas atypical absences were predominant in late-onset patients. Seventeen patients (77%) required antiseizure medications and six (27%) had pharmacoresistant epilepsy. Patients with epilepsy presented with a severe neurodebilitating disease with higher rates of speech delay (p = .04) and autism spectrum disorders (p = .01) and more frequent arginine supplementation (p = .01) compared to patients without epilepsy. Neonatal seizures were not associated with a higher risk of developing epilepsy. Biomarkers of ureagenesis did not differ between epileptic and non-epileptic patients. Epilepsy onset in early infancy (p = .05) and electroencephalographic background asymmetry (p = .0007) were significant predictors of partially controlled or refractory epilepsy. SIGNIFICANCE: Epilepsy in argininosuccinic aciduria is frequent, polymorphic, and associated with more frequent neurodevelopmental comorbidities. We identified prognostic factors for pharmacoresistance in epilepsy. This study does not support defective ureagenesis as prominent in the pathophysiology of epilepsy but suggests a role of central dopamine deficiency. A role of arginine in epileptogenesis was not supported and warrants further studies to assess the potential arginine neurotoxicity in argininosuccinic aciduria

    Liver transplantation in ornithine transcarbamylase deficiency: A retrospective multicentre cohort study

    Get PDF
    Ornithine transcarbamylase deficiency (OTCD) is an X-linked defect of ureagenesis and the most common urea cycle disorder. Patients present with hyperammonemia causing neurological symptoms, which can lead to coma and death. Liver transplantation (LT) is the only curative therapy, but has several limitations including organ shortage, significant morbidity and requirement of lifelong immunosuppression. This study aims to identify the characteristics and outcomes of patients who underwent LT for OTCD. // We conducted a retrospective study for OTCD patients from 5 UK centres receiving LT in 3 transplantation centres between 2010 and 2022. Patients' demographics, family history, initial presentation, age at LT, graft type and pre- and post-LT clinical, metabolic, and neurocognitive profile were collected from medical records.// A total of 20 OTCD patients (11 males, 9 females) were enrolled in this study. 6/20 had neonatal and 14/20 late-onset presentation. 2/20 patients had positive family history for OTCD and one of them was diagnosed antenatally and received prospective treatment. All patients were managed with standard of care based on protein-restricted diet, ammonia scavengers and supplementation with arginine and/or citrulline before LT. 15/20 patients had neurodevelopmental problems before LT. The indication for LT was presence (or family history) of recurrent metabolic decompensations occurring despite standard medical therapy leading to neurodisability and quality of life impairment. Median age at LT was 10.5 months (6–24) and 66 months (35–156) in neonatal and late onset patients, respectively. 15/20 patients had deceased donor LT (DDLT) and 5/20 had living related donor LT (LDLT). Overall survival was 95% with one patient dying 6 h after LT. 13/20 had complications after LT and 2/20 patients required re-transplantation. All patients discontinued dietary restriction and ammonia scavengers after LT and remained metabolically stable. Patients who had neurodevelopmental problems before LT persisted to have difficulties after LT. 1/5 patients who was reported to have normal neurodevelopment before LT developed behavioural problems after LT, while the remaining 4 maintained their abilities without any reported issues. // LT was found to be effective in correcting the metabolic defect, eliminates the risk of hyperammonemia and prolongs patients' survival

    Methylation deficiency disrupts biological rhythms from bacteria to humans

    Get PDF
    メチル化と体内時計が生命誕生以来の密な関係にあることを発見 --生命の起源に学ぶヒト障害の新治療法--. 京都大学プレスリリース. 2020-05-27.The methyl cycle is a universal metabolic pathway providing methyl groups for the methylation of nuclei acids and proteins, regulating all aspects of cellular physiology. We have previously shown that methyl cycle inhibition in mammals strongly affects circadian rhythms. Since the methyl cycle and circadian clocks have evolved early during evolution and operate in organisms across the tree of life, we sought to determine whether the link between the two is also conserved. Here, we show that methyl cycle inhibition affects biological rhythms in species ranging from unicellular algae to humans, separated by more than 1 billion years of evolution. In contrast, the cyanobacterial clock is resistant to methyl cycle inhibition, although we demonstrate that methylations themselves regulate circadian rhythms in this organism. Mammalian cells with a rewired bacteria-like methyl cycle are protected, like cyanobacteria, from methyl cycle inhibition, providing interesting new possibilities for the treatment of methylation deficiencies

    International consensus guidelines for phosphoglucomutase 1 deficiency (PGM1-CDG): Diagnosis, follow-up, and management

    Get PDF
    P. W. is supported by the Clinical Research Fund, University Hospitals Leuven, Leuven, Belgium. This work is partially funded by the grant titled Frontiers in Congenital Disorders of Glycosylation (1U54NS115198-01) from the National Institute of Neurological Diseases and Stroke (NINDS), the National Center for Advancing Translational Sciences (NCATS), and the Rare Disorders Consortium Research Network (RDCRN) (E. M., K. R., C. F., H. F., C. L., and A. E.)Phosphoglucomutase 1 (PGM1) deficiency is a rare genetic disorder that affects glycogen metabolism, glycolysis, and protein glycosylation. Previously known as GSD XIV, it was recently reclassified as a congenital disorder of glycosylation, PGM1-CDG. PGM1-CDG usually manifests as a multisystem disease. Most patients present as infants with cleft palate, liver function abnormalities and hypoglycemia, but some patients present in adulthood with isolated muscle involvement. Some patients develop life-threatening cardiomyopathy. Unlike most other CDG, PGM1-CDG has an effective treatment option, d-galactose, which has been shown to improve many of the patients' symptoms. Therefore, early diagnosis and initiation of treatment for PGM1-CDG patients are crucial decisions. In this article, our group of international experts suggests diagnostic, follow-up, and management guidelines for PGM1-CDG. These guidelines are based on the best available evidence-based data and experts' opinions aiming to provide a practical resource for health care providers to facilitate successful diagnosis and optimal management of PGM1-CDG patients.preprintpublishe

    Predominant and novel de novo variants in 29 individuals with ALG13 deficiency: Clinical description, biomarker status, biochemical analysis, and treatment suggestions

    Get PDF
    Asparagine-linked glycosylation 13 homolog (ALG13) encodes a nonredundant, highly conserved, X-linked uridine diphosphate (UDP)-N-acetylglucosaminyltransferase required for the synthesis of lipid linked oligosaccharide precursor and proper N-linked glycosylation. De novo variants in ALG13 underlie a form of early infantile epileptic encephalopathy known as EIEE36, but given its essential role in glycosylation, it is also considered a congenital disorder of glycosylation (CDG), ALG13-CDG. Twenty-four previously reported ALG13-CDG cases had de novo variants, but surprisingly, unlike most forms of CDG, ALG13-CDG did not show the anticipated glycosylation defects, typically detected by altered transferrin glycosylation. Structural homology modeling of two recurrent de novo variants, p.A81T and p.N107S, suggests both are likely to impact the function of ALG13. Using a corresponding ALG13-deficient yeast strain, we show that expressing yeast ALG13 with either of the highly conserved hotspot variants rescues the observed growth defect, but not its glycosylation abnormality. We present molecular and clinical data on 29 previously unreported individuals with de novo variants in ALG13. This more than doubles the number of known cases. A key finding is that a vast majority of the individuals presents with West syndrome, a feature shared with other CDG types. Among these, the initial epileptic spasms best responded to adrenocorticotropic hormone or prednisolone, while clobazam and felbamate showed promise for continued epilepsy treatment. A ketogenic diet seems to play an important role in the treatment of these individuals.Fil: Ng, Bobby G.. Sanford Burnham Prebys Medical Discovery Institute; Estados UnidosFil: Eklund, Erik A.. Sanford Burnham Prebys Medical Discovery Institute; Estados Unidos. Lund University; SueciaFil: Shiryaev, Sergey A.. Sanford Burnham Prebys Medical Discovery Institute; Estados UnidosFil: Dong, Yin Y.. University of Oxford; Reino UnidoFil: Abbott, Mary Alice. University of Massachusetts Medical School; Estados UnidosFil: Asteggiano, Carla Gabriela. Universidad Católica de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Medicina. Centro de Estudios de las Metabolopatías Congénitas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Bamshad, Michael J.. University of Washington; Estados UnidosFil: Barr, Eileen. University of Emory; Estados UnidosFil: Bernstein, Jonathan A.. University of Stanford; Estados UnidosFil: Chelakkadan, Shabeed. Monash Children's Hospital; AustraliaFil: Christodoulou, John. Sydney Medical School; Australia. University of Melbourne; AustraliaFil: Chung, Wendy K.. Columbia University; Estados UnidosFil: Ciliberto, Michael A.. University of Iowa; Estados UnidosFil: Cousin, Janice. National Human Genome Research Institute ; Estados UnidosFil: Gardiner, Fiona. University of Melbourne; AustraliaFil: Ghosh, Suman. University of Florida; Estados UnidosFil: Graf, William D.. University of Connecticut; Estados UnidosFil: Grunewald, Stephanie. University College London; Estados UnidosFil: Hammond, Katherine. University of Alabama at Birmingahm; Estados UnidosFil: Hauser, Natalie S.. Inova, Fairfax Hospital Falls Church; Estados UnidosFil: Hoganson, George E.. University Of Illinois At Chicago; Estados UnidosFil: Houck, Kimberly M.. Baylor College of Medicine; Estados UnidosFil: Kohler, Jennefer N.. University of Stanford; Estados UnidosFil: Morava, Eva. Mayo Clinic; Estados UnidosFil: Larson, Austin A.. University Of Colorado Anschutz Medical Campus.; Estados UnidosFil: Liu, Pengfei. Baylor Genetics; Estados Unidos. Baylor College Of Medicine; Estados UnidosFil: Madathil, Sujana. University of Iowa; Estados UnidosFil: McCormack, Colleen. University of Stanford; Estados UnidosFil: Meeks, Naomi J.L.. University Of Colorado Anschutz Medical Campus.; Estados UnidosFil: Papazoglu, Gabriela Magali. Universidad Nacional de Córdoba. Facultad de Medicina. Centro de Estudios de las Metabolopatías Congénitas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin

    Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder

    Get PDF
    Glucose transporter-1 deficiency syndrome is caused by mutations in the SLC2A1 gene in the majority of patients and results in impaired glucose transport into the brain. From 2004-2008, 132 requests for mutational analysis of the SLC2A1 gene were studied by automated Sanger sequencing and multiplex ligation-dependent probe amplification. Mutations in the SLC2A1 gene were detected in 54 patients (41%) and subsequently in three clinically affected family members. In these 57 patients we identified 49 different mutations, including six multiple exon deletions, six known mutations and 37 novel mutations (13 missense, five nonsense, 13 frame shift, four splice site and two translation initiation mutations). Clinical data were retrospectively collected from referring physicians by means of a questionnaire. Three different phenotypes were recognized: (i) the classical phenotype (84%), subdivided into early-onset (<2 years) (65%) and late-onset (18%); (ii) a non-classical phenotype, with mental retardation and movement disorder, without epilepsy (15%); and (iii) one adult case of glucose transporter-1 deficiency syndrome with minimal symptoms. Recognizing glucose transporter-1 deficiency syndrome is important, since a ketogenic diet was effective in most of the patients with epilepsy (86%) and also reduced movement disorders in 48% of the patients with a classical phenotype and 71% of the patients with a non-classical phenotype. The average delay in diagnosing classical glucose transporter-1 deficiency syndrome was 6.6 years (range 1 month-16 years). Cerebrospinal fluid glucose was below 2.5 mmol/l (range 0.9-2.4 mmol/l) in all patients and cerebrospinal fluid : blood glucose ratio was below 0.50 in all but one patient (range 0.19-0.52). Cerebrospinal fluid lactate was low to normal in all patients. Our relatively large series of 57 patients with glucose transporter-1 deficiency syndrome allowed us to identify correlations between genotype, phenotype and biochemical data. Type of mutation was related to the severity of mental retardation and the presence of complex movement disorders. Cerebrospinal fluid : blood glucose ratio was related to type of mutation and phenotype. In conclusion, a substantial number of the patients with glucose transporter-1 deficiency syndrome do not have epilepsy. Our study demonstrates that a lumbar puncture provides the diagnostic clue to glucose transporter-1 deficiency syndrome and can thereby dramatically reduce diagnostic delay to allow early start of the ketogenic die
    corecore