1,813 research outputs found

    Optical properties of arrays of quantum dots with internal disorder

    Full text link
    Optical properties of large arrays of isolated quantum dots are discussed in order to interpret the existent photoluminescence data. The presented theory explains the large observed shift between the lowest emission and absorption energies as the average distance between the ground and first excited states of the dots. The lineshape of the spectra is calculated for the case when the fluctuations of the energy levels in quantum dots are due to the alloy composition fluctuations. The calculated lineshape is in good agreement with the experimental data. The influence of fluctuations of the shape of quantum dots on the photoluminescence spectra is also discussed.Comment: 7 pages (twocolumn) LATEX, 6 Postscript figure

    Comparative analysis of model behaviour for flood prediction purposes using Self-Organizing Maps

    Get PDF
    Distributed watershed models constitute a key component in flood forecasting systems. It is widely recognized that models because of their structural differences have varying capabilities of capturing different aspects of the system behaviour equally well. Of course, this also applies to the reproduction of peak discharges by a simulation model which is of particular interest regarding the flood forecasting problem. <br><br> In our study we use a Self-Organizing Map (SOM) in combination with index measures which are derived from the flow duration curve in order to examine the conditions under which three different distributed watershed models are capable of reproducing flood events present in the calibration data. These indices are specifically conceptualized to extract data on the peak discharge characteristics of model output time series which are obtained from Monte-Carlo simulations with the distributed watershed models NASIM, LARSIM and WaSIM-ETH. The SOM helps to analyze this data by producing a discretized mapping of their distribution in the index space onto a two dimensional plane such that their pattern and consequently the patterns of model behaviour can be conveyed in a comprehensive manner. It is demonstrated how the SOM provides useful information about details of model behaviour and also helps identifying the model parameters that are relevant for the reproduction of peak discharges and thus for flood prediction problems. It is further shown how the SOM can be used to identify those parameter sets from among the Monte-Carlo data that most closely approximate the peak discharges of a measured time series. The results represent the characteristics of the observed time series with partially superior accuracy than the reference simulation obtained by implementing a simple calibration strategy using the global optimization algorithm SCE-UA. The most prominent advantage of using SOM in the context of model analysis is that it allows to comparatively evaluating the data from two or more models. Our results highlight the individuality of the model realizations in terms of the index measures and shed a critical light on the use and implementation of simple and yet too rigorous calibration strategies

    Quantum wires from coupled InAs/GaAs strained quantum dots

    Full text link
    The electronic structure of an infinite 1D array of vertically coupled InAs/GaAs strained quantum dots is calculated using an eight-band strain-dependent k-dot-p Hamiltonian. The coupled dots form a unique quantum wire structure in which the miniband widths and effective masses are controlled by the distance between the islands, d. The miniband structure is calculated as a function of d, and it is shown that for d>4 nm the miniband is narrower than the optical phonon energy, while the gap between the first and second minibands is greater than the optical phonon energy. This leads to decreased optical phonon scattering, providing improved quantum wire behavior at high temperatures. These miniband properties are also ideal for Bloch oscillation.Comment: 5 pages revtex, epsf, 8 postscript figure

    Eight-band calculations of strained InAs/GaAs quantum dots compared with one, four, and six-band approximations

    Full text link
    The electronic structure of pyramidal shaped InAs/GaAs quantum dots is calculated using an eight-band strain dependent kâ‹…p\bf k\cdot p Hamiltonian. The influence of strain on band energies and the conduction-band effective mass are examined. Single particle bound-state energies and exciton binding energies are computed as functions of island size. The eight-band results are compared with those for one, four and six bands, and with results from a one-band approximation in which m(r) is determined by the local value of the strain. The eight-band model predicts a lower ground state energy and a larger number of excited states than the other approximations.Comment: 8 pages, 7 figures, revtex, eps

    Influence of shock wave propagation on dielectric barrier discharge plasma actuator performance

    Get PDF
    Interest in plasma actuators as active flow control devices is growing rapidly due to their lack of mechanical parts, light weight and high response frequency. Although the flow induced by these actuators has received much attention, the effect that the external flow has on the performance of the actuator itself must also be considered, especially the influence of unsteady high-speed flows which are fast becoming a norm in the operating flight envelopes. The primary objective of this study is to examine the characteristics of a dielectric barrier discharge (DBD) plasma actuator when exposed to an unsteady flow generated by a shock tube. This type of flow, which is often used in different studies, contains a range of flow regimes from sudden pressure and density changes to relatively uniform high-speed flow regions. A small circular shock tube is employed along with the schlieren photography technique to visualize the flow. The voltage and current traces of the plasma actuator are monitored throughout, and using the well-established shock tube theory the change in the actuator characteristics are related to the physical processes which occur inside the shock tube. The results show that not only is the shear layer outside of the shock tube affected by the plasma but the passage of the shock front and high-speed flow behind it also greatly influences the properties of the plasma

    La comunicazione politica nei manifesti della campagna elettorale 2008

    Get PDF
    Il presente lavoro si propone di prendere in esame i criteri comunicativi adottati dai principali partiti nei manifesti elettorali prodotti in occasione delle elezioni politiche del 2008. Dopo una breve parte propedeutica sulla comunicazione politica ed un excursus sulla storia del manifesto politico si procede ad analizzare dettagliatamente i manifesti elettorali dei principali partiti: Il Popolo della Libertà, Alleanza Nazionale, Lega Nord, La Destra, Partito Democratico, Italia dei Valori, Unione di Centro, Partito Socialista, La Sinistra, l’Arcobaleno. L’analisi si basa sui manifesti che è stato possibile rintracciare sui siti internet dei partiti e nella Rete in generale. I principali campi di indagine sono: il tipo di immagini scelte dai partiti a suffragio delle loro proposte politiche, la grafica, i colori e il lessico adottato per attirare l’attenzione dell’elettore e convincerlo ad orientare il suo voto in una determinata direzion

    Photon trains and lasing : The periodically pumped quantum dot

    Get PDF
    We propose to pump semiconductor quantum dots with surface acoustic waves which deliver an alternating periodic sequence of electrons and holes. In combination with a good optical cavity such regular pumping could entail anti-bunching and sub-Poissonian photon statistics. In the bad-cavity limit a train of equally spaced photons would arise.Comment: RevTex, 5 pages, 1 figur
    • …
    corecore