126 research outputs found

    Evaluation of health effects of air pollution in the Chestnut Ridge area : preliminary analysis

    Get PDF
    This project involves several tasks designed to take advantage of (1) a very extensive air pollution monitoring system that is operating ..n the Chestnut Ridge.region of Western Pennsylvania and (2) -the very well developed analytic dispersion models that have been previously fine-tuned to this particular area.. The major task in this project is to establish, through several distinct epidemiolopic approaches, health data to be used to test hypotheses about relations of air pollution exposures to morbidity and mortality rates in this region. Because the air quality monitoring network involves no expense to this contract this project affords a very cost-effective 6pportunity-for state-of-the-art techniques to be used in both costly areas of air pollution and health -effects data col1 ection. . The closely spaced network of monitors, plus the dispersion modeling capabilities,.allow for the investigation- of health impacts of. various pollutant gradients in neighboring geographic areas, thus minimizing -the confounding effects of social, ethnic, and economic factors. The pollutants that are monitored in this network include total gaseous sulfur, sulfates, total suspended particulates, NOx, NO, ozone/oxidants, and coefficient of haze. In addition to enabling the simulation of exposure profiles between monitors, the air quality2 modeling, along with extensive source and background inventories, will allow for upgrading the quality of the monitored data. as well as simulating the exposure levels for about 25 additional air pollutants. Another important goal of this project is to collect and test the many available models for associating.health effects with air pollution, to determine their predictive validity and their usefulness in the choice and siting of future energy facilities

    Identification, visualization and clonal analysis of intestinal stem cells in fish.

    Get PDF
    Recently, a stochastic model of symmetrical stem cell division followed by neutral drift has been proposed for intestinal stem cells (ISCs), which has been suggested to represent the predominant mode of stem cell progression in mammals. In contrast, stem cells in the retina of teleost fish show an asymmetric division mode. To address whether the mode of stem cell division follows phylogenetic or ontogenetic routes, we analysed the entire gastrointestinal tract of the teleost medaka (Oryzias latipes). X-ray microcomputed tomography shows a correlation of 3D topography with the functional domains. Analysis of ISCs in proliferation assays and via genetically encoded lineage tracing highlights a stem cell niche in the furrow between the long intestinal folds that is functionally equivalent to mammalian intestinal crypts. Stem cells in this compartment are characterized by the expression of homologs of mammalian ISC markers - sox9, axin2 and lgr5 - emphasizing the evolutionary conservation of the Wnt pathway components in the stem cell niche of the intestine. The stochastic, sparse initial labelling of ISCs ultimately resulted in extended labelled or unlabelled domains originating from single stem cells in the furrow niche, contributing to both homeostasis and growth. Thus, different modes of stem cell division co-evolved within one organism, and in the absence of physical isolation in crypts, ISCs contribute to homeostatic growth

    The Dynamics of Viral Marketing

    Full text link
    We present an analysis of a person-to-person recommendation network, consisting of 4 million people who made 16 million recommendations on half a million products. We observe the propagation of recommendations and the cascade sizes, which we explain by a simple stochastic model. We analyze how user behavior varies within user communities defined by a recommendation network. Product purchases follow a 'long tail' where a significant share of purchases belongs to rarely sold items. We establish how the recommendation network grows over time and how effective it is from the viewpoint of the sender and receiver of the recommendations. While on average recommendations are not very effective at inducing purchases and do not spread very far, we present a model that successfully identifies communities, product and pricing categories for which viral marketing seems to be very effective

    A meta-analysis of state-of-the-art electoral prediction from Twitter data

    Full text link
    Electoral prediction from Twitter data is an appealing research topic. It seems relatively straightforward and the prevailing view is overly optimistic. This is problematic because while simple approaches are assumed to be good enough, core problems are not addressed. Thus, this paper aims to (1) provide a balanced and critical review of the state of the art; (2) cast light on the presume predictive power of Twitter data; and (3) depict a roadmap to push forward the field. Hence, a scheme to characterize Twitter prediction methods is proposed. It covers every aspect from data collection to performance evaluation, through data processing and vote inference. Using that scheme, prior research is analyzed and organized to explain the main approaches taken up to date but also their weaknesses. This is the first meta-analysis of the whole body of research regarding electoral prediction from Twitter data. It reveals that its presumed predictive power regarding electoral prediction has been rather exaggerated: although social media may provide a glimpse on electoral outcomes current research does not provide strong evidence to support it can replace traditional polls. Finally, future lines of research along with a set of requirements they must fulfill are provided.Comment: 19 pages, 3 table

    Epidemic processes in complex networks

    Get PDF
    In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.Comment: 62 pages, 15 figures, final versio

    Combining Computational Prediction of Cis-Regulatory Elements with a New Enhancer Assay to Efficiently Label Neuronal Structures in the Medaka Fish

    Get PDF
    The developing vertebrate nervous system contains a remarkable array of neural cells organized into complex, evolutionarily conserved structures. The labeling of living cells in these structures is key for the understanding of brain development and function, yet the generation of stable lines expressing reporter genes in specific spatio-temporal patterns remains a limiting step. In this study we present a fast and reliable pipeline to efficiently generate a set of stable lines expressing a reporter gene in multiple neuronal structures in the developing nervous system in medaka. The pipeline combines both the accurate computational genome-wide prediction of neuronal specific cis-regulatory modules (CRMs) and a newly developed experimental setup to rapidly obtain transgenic lines in a cost-effective and highly reproducible manner. 95% of the CRMs tested in our experimental setup show enhancer activity in various and numerous neuronal structures belonging to all major brain subdivisions. This pipeline represents a significant step towards the dissection of embryonic neuronal development in vertebrates

    Cleavage modification did not alter blastomere fates during bryozoan evolution

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The study was funded by the core budget of the Sars Centre and by The European Research Council Community’s Framework Program Horizon 2020 (2014–2020) ERC grant agreement 648861 to A
    corecore