1,089 research outputs found

    Conducting LaAlO3/SrTiO3 heterointerfaces on atomically flat substrates prepared by deionized-water

    Get PDF
    We have investigated how the recently-developed water-leaching method for atomically-flat SrTiO3 (STO) substrates affects the transport properties of LaAlO3 (LAO) and STO heterointerfaces. Using pulsed laser deposition at identical growth conditions, we have synthesized epitaxial LAO thin-films on two different STO substrates, which are prepared by water-leaching and buffered hydrofluoric acid (BHF) etching methods. The structural, transport, and optical properties of LAO/STO heterostructures grown on water-leached substrates show the same high-quality as the samples grown on BHF-etched substrates. These results indicate that the water-leaching method can be used to grow complex oxide heterostructures with atomically well-defined heterointerfaces without safety concerns.Comment: 10 pages, 4 figure

    Two-Fermion Production in Electron-Positron Collisions

    Get PDF
    This report summarizes the results of the two-fermion working group of the LEP2-MC workshop, held at CERN from 1999 to 2000. Recent developments in the theoretical calculations of the two fermion production process in the electron-positron collision at LEP2 center of the mass energies are reported. The Bhabha process and the production of muon, tau, neutrino and quark pairs is covered. On the basis of comparison of various calculations, theoretical uncertainties are estimated and compared with those needed for the final LEP2 data analysis. The subjects for the further studies are identified.Comment: 2-fermion working group report of the LEP2 Monte Carlo Workshop 1999/2000, 113 pages, 24 figures, 35 table

    Dynamic and volumetric variables reliably predict fluid responsiveness in a porcine model with pleural effusion

    Get PDF
    Background: The ability of stroke volume variation (SVV), pulse pressure variation (PPV) and global end-diastolic volume (GEDV) for prediction of fluid responsiveness in presence of pleural effusion is unknown. The aim of the present study was to challenge the ability of SVV, PPV and GEDV to predict fluid responsiveness in a porcine model with pleural effusions. Methods: Pigs were studied at baseline and after fluid loading with 8 ml kg−1 6% hydroxyethyl starch. After withdrawal of 8 ml kg−1 blood and induction of pleural effusion up to 50 ml kg−1 on either side, measurements at baseline and after fluid loading were repeated. Cardiac output, stroke volume, central venous pressure (CVP) and pulmonary occlusion pressure (PAOP) were obtained by pulmonary thermodilution, whereas GEDV was determined by transpulmonary thermodilution. SVV and PPV were monitored continuously by pulse contour analysis. Results: Pleural effusion was associated with significant changes in lung compliance, peak airway pressure and stroke volume in both responders and non-responders. At baseline, SVV, PPV and GEDV reliably predicted fluid responsiveness (area under the curve 0.85 (p<0.001), 0.88 (p<0.001), 0.77 (p = 0.007). After induction of pleural effusion the ability of SVV, PPV and GEDV to predict fluid responsiveness was well preserved and also PAOP was predictive. Threshold values for SVV and PPV increased in presence of pleural effusion. Conclusions: In this porcine model, bilateral pleural effusion did not affect the ability of SVV, PPV and GEDV to predict fluid responsiveness

    Four-Fermion Production in Electron-Positron Collisions

    Get PDF
    This report summarises the results of the four-fermion working group of the LEP2-MC workshop, held at CERN from 1999 to 2000. Recent developments in the calculation of four-fermion processes in electron-positron collisions at LEP-2 centre-of-mass energies are presented, concentrating on predictions for four main reactions: W-pair production, visible photons in four-fermion events, single-W production and Z-pair production. Based on a comparison of results derived within different approaches, theoretical uncertainties on these predictions are established.Comment: 150 pages, 73 figures, 45 table

    Giant persistent photoconductivity in monolayer MoS2 field-effect transistors

    Get PDF
    Monolayer transition metal dichalcogenides (TMD) have numerous potential applications in ultrathin electronics and photonics. The exposure of TMD-based devices to light generates photo-carriers resulting in an enhanced conductivity, which can be effectively used, e.g., in photodetectors. If the photo-enhanced conductivity persists after removal of the irradiation, the effect is known as persistent photoconductivity (PPC). Here we show that ultraviolet light (λ = 365 nm) exposure induces an extremely long-living giant PPC (GPPC) in monolayer MoS2 (ML-MoS2) field-effect transistors (FET) with a time constant of ~30 days. Furthermore, this effect leads to a large enhancement of the conductivity up to a factor of 107. In contrast to previous studies in which the origin of the PPC was attributed to extrinsic reasons such as trapped charges in the substrate or adsorbates, we show that the GPPC arises mainly from the intrinsic properties of ML-MoS2 such as lattice defects that induce a large number of localized states in the forbidden gap. This finding is supported by a detailed experimental and theoretical study of the electric transport in TMD based FETs as well as by characterization of ML-MoS2 with scanning tunneling spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. The obtained results provide a basis for the defect-based engineering of the electronic and optical properties of TMDs for device applications

    Outdoor Air Pollution Exposure and Inter-relation of Global Cognitive Performance and Emotional Distress in Older Women

    Get PDF
    The interrelationships among long-term ambient air pollution exposure, emotional distress and cognitive decline in older adulthood remain unclear. Long-term exposure may impact cognitive performance and subsequently impact emotional health. Conversely, exposure may initially be associated with emotional distress followed by declines in cognitive performance. Here we tested the inter-relationship between global cognitive ability, emotional distress, and exposure to PM2.5 (particulate matter with aerodynamic diameter 2 (nitrogen dioxide) in 6118 older women (aged 70.6 ± 3.8 years) from the Women’s Health Initiative Memory Study. Annual exposure to PM2.5 (interquartile range [IQR] = 3.37 μg/m3) and NO2 (IQR = 9.00 ppb) was estimated at the participant’s residence using regionalized national universal kriging models and averaged over the 3-year period before the baseline assessment. Using structural equation mediation models, a latent factor capturing emotional distress was constructed using item-level data from the 6-item Center for Epidemiological Studies Depression Scale and the Short Form Health Survey Emotional Well-Being scale at baseline and one-year follow-up. Trajectories of global cognitive performance, assessed by the Modified-Mini Mental State Examination (3MS) annually up to 12 years, were estimated. All effects reported were adjusted for important confounders. Increases in PM2.5 (β = -0.144 per IQR; 95% CI = −0.261; −0.028) and NO2 (β = −0.157 per IQR; 95% CI = −0.291; −0.022) were associated with lower initial 3MS performance. Lower 3MS performance was associated with increased emotional distress (β = −0.008; 95% CI = −0.015; −0.002) over the subsequent year. Significant indirect effect of both exposures on increases in emotional distress mediated by exposure effects on worse global cognitive performance were present. No statistically significant indirect associations were found between exposures and 3MS trajectories putatively mediated by baseline emotional distress. Our study findings support cognitive aging processes as a mediator of the association between PM2.5 and NO2 exposure and emotional distress in later-life

    Mapping Urban Performance Culture: A Common Ground for Architecture and Theater

    Full text link
    Our co-taught course focuses on theater history, with an emphasis on performance architecture. Assignments are designed to illuminate the ways in which architectural design and technology inform performance practices and audience reception. The pivotal assignment for exploring interdisciplinarity is a three-week module on mapping historical theaters in New York City. Open-source Global Information Systems (GIS) software serves as a common mechanism for students to situate theatrical productions in the context of the built urban environment, deepening their understanding of the social, economic, and artistic forces that contributed to performance culture. Mapping is a shared pedagogy for analyzing and presenting research findings from different fields. Learning how to collect, analyze, and map data is also a general education skill that can be applied to disciplines across undergraduate curricula

    The influence of anesthetics, neurotransmitters and antibiotics on the relaxation processes in lipid membranes

    Get PDF
    In the proximity of melting transitions of artificial and biological membranes fluctuations in enthalpy, area, volume and concentration are enhanced. This results in domain formation, changes of the elastic constants, changes in permeability and slowing down of relaxation processes. In this study we used pressure perturbation calorimetry to investigate the relaxation time scale after a jump into the melting transition regime of artificial lipid membranes. This time corresponds to the characteristic rate of domain growth. The studies were performed on single-component large unilamellar and multilamellar vesicle systems with and without the addition of small molecules such as general anesthetics, neurotransmitters and antibiotics. These drugs interact with membranes and affect melting points and profiles. In all systems we found that heat capacity and relaxation times are related to each other in a simple manner. The maximum relaxation time depends on the cooperativity of the heat capacity profile and decreases with a broadening of the transition. For this reason the influence of a drug on the time scale of domain formation processes can be understood on the basis of their influence on the heat capacity profile. This allows estimations of the time scale of domain formation processes in biological membranes.Comment: 12 pages, 6 figure
    • …
    corecore