175 research outputs found

    Pseudogap and charge density waves in two dimensions

    Full text link
    An interaction between electrons and lattice vibrations (phonons) results in two fundamental quantum phenomena in solids: in three dimensions it can turn a metal into a superconductor whereas in one dimension it can turn a metal into an insulator. In two dimensions (2D) both superconductivity and charge-density waves (CDW) are believed to be anomalous. In superconducting cuprates, critical transition temperatures are unusually high and the energy gap may stay unclosed even above these temperatures (pseudogap). In CDW-bearing dichalcogenides the resistivity below the transition can decrease with temperature even faster than in the normal phase and a basic prerequisite for the CDW, the favourable nesting conditions (when some sections of the Fermi surface appear shifted by the same vector), seems to be absent. Notwithstanding the existence of alternatives to conventional theories, both phenomena in 2D still remain the most fascinating puzzles in condensed matter physics. Using the latest developments in high-resolution angle-resolved photoemission spectroscopy (ARPES) here we show that the normal-state pseudogap also exists in one of the most studied 2D examples, dichalcogenide 2H-TaSe2, and the formation of CDW is driven by a conventional nesting instability, which is masked by the pseudogap. Our findings reconcile and explain a number of unusual, as previously believed, experimental responses as well as disprove many alternative theoretical approaches. The magnitude, character and anisotropy of the 2D-CDW pseudogap are intriguingly similar to those seen in superconducting cuprates.Comment: 14 pages including figures and supplementary informatio

    Unaveraged modelling of a LWFA driven FEL

    Get PDF
    Preliminary simulations of a Laser Wakefield Field Accelerator driven FEL are presented using the 3D unaveraged, broad bandwidth FEL simulation code Puffin. The radius of the matched low emittance electron beam suggests that the FEL interaction will be strongly affected by radiation diffraction. The parameter scaling and comparison between 3D and equivalent 1D simulations appears to confirm the interaction is diffraction dominated. Nevertheless, output powers are predicted to be greater than those of similar unaveraged FEL models. Possible reasons for the discrepancies between the averaged and unaveraged simulation results are discussed

    A Compact Approximate Solution to the Friedel-Anderson Impuriy Problem

    Full text link
    An approximate groundstate of the Anderson-Friedel impurity problem is presented in a very compact form. It requires solely the optimization of two localized electron states and consists of four Slater states (Slater determinants). The resulting singlet ground state energy lies far below the Anderson mean field solution and agrees well with the numerical results by Gunnarsson and Schoenhammer, who used an extensive 1/N_{f}-expansion for a spin 1/2 impurity with double occupancy of the impurity level. PACS: 85.20.Hr, 72.15.R

    Polar Volatiles Exploration in Peary Crater Enabled by NASA's Kilopower Project

    Get PDF
    For more than 50 years, scientists have discussed the possibility of the existence of water ice and other frozen volatiles at the lunar poles [1]. However, it was not until the 1990s when the polar orbiting spacecraft Clementine and Lunar Prospector collected data supporting these hypotheses [2]. Subsequent missions, including the Lunar Reconnaissance Orbiter (LRO) mission [3], and the Lunar Crater Observation and Sensing Satellite (LCROSS) mission [4], provided further evidence that supports the existence of water ice deposits at the lunar poles. During NASA's Constellation Program, several areas at both lunar poles polar were included in 50 Regions of Interest (ROI) for intensive study by the Lunar Reconnaissance Orbiter Camera (LROC) [5]. These polar ROI focused on peaks and craters rims that received high amounts of solar illumination, assuming initial missions back to the lunar surface would utilize solar arrays to generate electricity. Recently, the successful demonstration of NASA's Kilopower Project at the National Nuclear Security Administration (NNSA) Nevada National Security Site makes it possible to consider lunar polar missions at locations other than highly illuminated regions. The Kilopower Project was initiated in 2015 to demonstrate subsystem-level technology readiness of a small space fission power system [6]. This abstract describes the science objectives and operations for a mission concept developed at NASA Glenn Research Center's COMPASS Concurrent Engineering Team for a 1-year exploration of Peary Crater focused on prospecting for lunar polar volatiles

    Fermi surface nesting in several transition metal dichalcogenides

    Get PDF
    By means of high-resolution angle resolved photoelectron spectroscopy (ARPES) we have studied the fermiology of 2H transition metal dichalcogenide polytypes TaSe2, NbSe2, and Cu0.2NbS2. The tight-binding model of the electronic structure, extracted from ARPES spectra for all three compounds, was used to calculate the Lindhard function (bare spin susceptibility), which reflects the propensity to charge density wave (CDW) instabilities observed in TaSe2 and NbSe2. We show that though the Fermi surfaces of all three compounds possess an incommensurate nesting vector in the close vicinity of the CDW wave vector, the nesting and ordering wave vectors do not exactly coincide, and there is no direct relationship between the magnitude of the susceptibility at the nesting vector and the CDW transition temperature. The nesting vector persists across the incommensurate CDW transition in TaSe2 as a function of temperature despite the observable variations of the Fermi surface geometry in this temperature range. In Cu0.2NbS2 the nesting vector is present despite different doping level, which lets us expect a possible enhancement of the CDW instability with Cu-intercalation in the CuxNbS2 family of materials.Comment: Accepted to New J. Phy

    Comparing and Reconciling Traditional Field and Photogeologic Mapping Techniques: Lessons from the San Francisco Volcanic Field, Arizona

    Get PDF
    Cartographic products and - specifically - geologic maps provide critical assistance for establishing physical and temporal frameworks of planetary surfaces. The technical methods that result in the creation of geologic maps vary depending on how observations are made as well as the overall intent of the final products [1-3]. These methods tend to follow a common linear work flow, including the identification and delineation of spatially and temporally discrete materials (units), the documentation of their primary (emplacement) and secondary (erosional) characteristics, analysis of the relative and absolute age relationships between these materials, and the collation of observations and interpretations into an objective map product. The "objectivity" of a map is critical cross comparison with overlapping maps and topical studies as well as its relevance to scientific posterity. However, the "accuracy" and "correctness" of a geologic map is very subject to debate. This can be evidenced by comparison of existing geologic maps at various scales, particularly those compiled through field- and remote-based mapped efforts. Our study focuses on comparing the fidelity of (1) "Apollo-style" geologic investigations, where typically non-geologist crew members follow static traverse routes established through pre-mission planning, and (2) "traditional" field-based investigations, where geologists are given free rein to observe without preplanned routes. This abstract summarizes the regional geology wherein our study was conducted, presents the geologic map created from traditional field mapping techniques, and offers basic insights into how geologic maps created from different tactics can be reconciled in support of exploratory missions. Additional abstracts [4-6] from this study discuss various exploration and science results of these efforts

    Building on the Cornerstone: Destinations for Nearside Sample Return

    Get PDF
    Discoveries from LRO (Lunar Reconnaissance Orbiter) have transformed our knowledge of the Moon, but LRO's instruments were originally designed to collect the measurements required to enable future lunar surface exploration. Compelling science questions and critical resources make the Moon a key destination for future human and robotic exploration. Lunar surface exploration, including rovers and other landed missions, must be part of a balanced planetary science and exploration portfolio. Among the highest planetary exploration priorities is the collection of new samples and their return to Earth for more comprehensive analysis than can be done in-situ. The Moon is the closest and most accessible location to address key science questions through targeted sample return. The Moon is the only other planet from which we have contextualized samples, yet critical issues need to be addressed: we lack important details of the Moon's early and recent geologic history, the full compositional and age ranges of its crust, and its bulk composition

    Mapping Planetary Volcanic Deposits: Identifying Vents and Distinguishing between Effects of Eruption Conditions and Local Storage and Release on Flow Field Morphology

    Get PDF
    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone
    corecore