93 research outputs found

    Phenotypic analysis of the Plp1 gene overexpressing mouse model #72 : implications for demyelination and remyelination failure

    Get PDF
    Duplication of the proteolipid protein (PLP1) gene, which encodes the most abundant protein of central nervous system (CNS) myelin, is the most common cause of Pelizaeus Merzbacher disease (PMD). Various animal models have been generated to study the effect of Plp1 gene overexpression on oligodendrocyte and myelin sheath integrity. The #72 line harbours 3 additional copies of the murine Plp1 gene per haploidic chromosomal set. Homozygous #72 mice appear phenotypically normal until three months of age, after which they develop seizures leading to premature death at around 4 months of age. An earlier study examining the optic nerve showed a progressive demyelination accompanied by marked microglial and astrocytic responses. Using electron microscopy and immunohistochemistry, I demonstrated that initial myelination of the #72 corpus callosum was followed by a progressive demyelination, probably mediated by a distal “dying back” phenomenon of the myelin sheath. No evidence of effective remyelination was observed despite the presence and proliferation of oligodendrocyte progenitor cells (OPCs). A marked increase in density and reactivity of microglia/macrophages and astrocytes, and the occurrence of axonal swellings, accompanied the demyelination. In situ and in vitro evaluation of adult #72 OPCs provided evidence of impaired OPC differentiation. Transplantation of neurospheres (NS) into adult #72 mouse corpus callosum confirmed that axons were capable of undergoing remyelination. Furthermore, NS transplanted into neonatal CNS integrated into the parenchyma and survived up to 120 days, demonstrating the potential of early cell replacement therapy. Taking advantage of the spatially distinct pathologies between the retinal and chiasmal region of the #72 optic nerve, I evaluated the capability of diffusion weighted MRI to identify lesion type. I found significant differences between #72 and wild type optic nerves, as well as between the two distinct pathological regions within the #72 optic nerve. These results confirm the potential of the #72 mouse to serve as a model to study chronic demyelination. The study also demonstrates the utility of the #72 mouse to evaluate cell transplant strategies for the treatment of chronic CNS white matter lesions and PMD. Additionally, DW MRI has potential as a modality capable of diagnosing myelin-related white matter changes, and may be applicable to the clinical setting

    Financial Risk of the Home Purchase Decision

    Get PDF
    Housing, Interior Design and Consumer Studie

    Mystery on the Docks

    Get PDF

    Demyelination and axonal preservation in a transgenic mouse model of Pelizaeus-Merzbacher disease

    Get PDF
    It is widely thought that demyelination contributes to the degeneration of axons and, in combination with acute inflammatory injury, is responsible for progressive axonal loss and persistent clinical disability in inflammatory demyelinating disease. In this study we sought to characterize the relationship between demyelination, inflammation and axonal transport changes using a Plp1-transgenic mouse model of Pelizaeus-Merzbacher disease. In the optic pathway of this non-immune mediated model of demyelination, myelin loss progresses from the optic nerve head towards the brain, over a period of months. Axonal transport is functionally perturbed at sites associated with local inflammation and 'damaged' myelin. Surprisingly, where demyelination is complete, naked axons appear well preserved despite a significant reduction of axonal transport. Our results suggest that neuroinflammation and/or oligodendrocyte dysfunction are more deleterious for axonal health than demyelination per se, at least in the short ter

    Intra-session test-retest reliability of pelvic floor muscle electromyography during running

    Get PDF
    Introduction and hypothesis: The prevalence of female stress urinary incontinence is high, and young adults are also affected, including athletes, especially those involved in "high-impact” sports. To date there have been almost no studies testing pelvic floor muscle (PFM) activity during dynamic functional whole body movements. The aim of this study was the description and reliability test of PFM activity and time variables during running. Methods: A prospective cross-sectional study including ten healthy female subjects was designed with the focus on the intra-session test-retest reliability of PFM activity and time variables during running derived from electromyography (EMG) and accelerometry. Results: Thirteen variables were identified based on ten steps of each subject: Six EMG variables showed good reliability (ICC 0.906-0.942) and seven time variables did not show good reliability (ICC 0.113-0.731). Time variables (e.g. time difference between heel strike and maximal acceleration of vaginal accelerator) showed low reliability. However, relevant PFM EMG variables during running (e.g., pre-activation, minimal and maximal activity) could be identified and showed good reliability. Conclusion: Further adaptations regarding measurement methods should be tested to gain better control of the kinetics and kinematics of the EMG probe and accelerometers. To our knowledge this is the first study to test the reliability of PFM activity and time variables during dynamic functional whole body movements. More knowledge of PFM activity and time variables may help to provide a deeper insight into physical strain with high force impacts and important functional reflexive contraction patterns of PFM to maintain or to restore continenc

    Neural stem cells restore myelin in a demyelinating model of Pelizaeus-Merzbacher disease

    Get PDF
    Pelizaeus-Merzbacher disease is a fatal X-linked leukodystrophy caused by mutations in the PLP1 gene, which is expressed in the CNS by oligodendrocytes. Disease onset, symptoms and mortality span a broad spectrum depending on the nature of the mutation and thus the degree of CNS hypomyelination. In the absence of an effective treatment, direct cell transplantation into the CNS to restore myelin has been tested in animal models of severe forms of the disease with failure of developmental myelination, and more recently, in severely affected patients with early disease onset due to point mutations in the PLP1 gene, and absence of myelin by MRI. In patients with a PLP1 duplication mutation, the most common cause of Pelizaeus-Merzbacher disease, the pathology is poorly defined because of a paucity of autopsy material. To address this, we examined two elderly patients with duplication of PLP1 in whom the overall syndrome, including end-stage pathology, indicated a complex disease involving dysmyelination, demyelination and axonal degeneration. Using the corresponding Plp1 transgenic mouse model, we then tested the capacity of transplanted neural stem cells to restore myelin in the context of PLP overexpression. Although developmental myelination and axonal coverage by endogenous oligodendrocytes was extensive, as assessed using electron microscopy (n = 3 at each of four end points) and immunostaining (n = 3 at each of four end points), wild-type neural precursors, transplanted into the brains of the newborn mutants, were able to effectively compete and replace the defective myelin (n = 2 at each of four end points). These data demonstrate the potential of neural stem cell therapies to restore normal myelination and protect axons in patients with PLP1 gene duplication mutation and further, provide proof of principle for the benefits of stem cell transplantation for other fatal leukodystrophies with ‘normal’ developmental myelination

    Injectable living marrow stromal cell-based autologous tissue engineered heart valves: first experiences with a one-step intervention in primates

    Get PDF
    Aims A living heart valve with regeneration capacity based on autologous cells and minimally invasive implantation technology would represent a substantial improvement upon contemporary heart valve prostheses. This study investigates the feasibility of injectable, marrow stromal cell-based, autologous, living tissue engineered heart valves (TEHV) generated and implanted in a one-step intervention in non-human primates. Methods and results Trileaflet heart valves were fabricated from non-woven biodegradable synthetic composite scaffolds and integrated into self-expanding nitinol stents. During the same intervention autologous bone marrow-derived mononuclear cells were harvested, seeded onto the scaffold matrix, and implanted transapically as pulmonary valve replacements into non-human primates (n = 6). The transapical implantations were successful in all animals and the overall procedure time from cell harvest to TEHV implantation was 118 ± 17 min. In vivo functionality assessed by echocardiography revealed preserved valvular structures and adequate functionality up to 4 weeks post implantation. Substantial cellular remodelling and in-growth into the scaffold materials resulted in layered, endothelialized tissues as visualized by histology and immunohistochemistry. Biomechanical analysis showed non-linear stress-strain curves of the leaflets, indicating replacement of the initial biodegradable matrix by living tissue. Conclusion Here, we provide a novel concept demonstrating that heart valve tissue engineering based on a minimally invasive technique for both cell harvest and valve delivery as a one-step intervention is feasible in non-human primates. This innovative approach may overcome the limitations of contemporary surgical and interventional bioprosthetic heart valve prosthese

    Global Use of Idarucizumab in Clinical Practice: Outcomes of the RE-VECTO Surveillance Program.

    Get PDF
    Idarucizumab was approved for the reversal of dabigatran in 2015. We investigated whether postapproval usage patterns of idarucizumab in a real-world setting reflect those observed in the pivotal trials. No safety or efficacy data were collected in this medical record-based observational study. RE-VECTO, a global postapproval, international, surveillance program, involved hospital pharmacies in countries where idarucizumab was licensed and dispensed (August 2016-June 2018). Characteristics of sites prescribing idarucizumab and of eligible patients (≥ 18 years old and receiving idarucizumab regardless of prior oral anticoagulant use), as well as idarucizumab utilization data, were collected and analyzed descriptively. Sixty-one sites enrolled 359 patients. Most pharmacies (85.2%) were centralized, and the median idarucizumab units stocked per hospital was 2.0 (interquartile range, 1.0-3.0). Almost three-quarters of patients were elderly (74.9% aged > 70 years), and only four (1.1%) had received idarucizumab before. Nearly all patients were treated with dabigatran (97.5%). There was a low frequency of unapproved dabigatran dosage regimens (3.3%). Life-threatening or uncontrolled bleeding was the most frequent indication for idarucizumab (57.7%), followed by emergency surgery/urgent procedure (35.9%). Of the life-threatening bleeding events, the most frequent were gastrointestinal tract (44.4%) and intracranial (38.6%). Most patients (95.0%) were given the full dose of two vials (2 × 2.5 g) of idarucizumab initially, and very few (1.7%) received a second dose. Of those patients requiring emergency or scheduled/planned surgery/procedures, 25.5% underwent gastrointestinal and/or abdominal surgery/procedures. Real-world usage patterns of idarucizumab provide valuable insights into emergency reversal strategies. Off-label use was minimal
    corecore